From: raphael couturier Date: Fri, 18 Jul 2014 14:08:02 +0000 (+0200) Subject: version ali X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/Sensornets15.git/commitdiff_plain/dc8aac46206ffe1156ceddd7cc585be789596d66?ds=sidebyside version ali --- dc8aac46206ffe1156ceddd7cc585be789596d66 diff --git a/Example.bib b/Example.bib new file mode 100644 index 0000000..f16ee05 --- /dev/null +++ b/Example.bib @@ -0,0 +1,722 @@ + +@INPROCEEDINGS{Moore99, + AUTHOR = "R. Moore and J. Lopes", + TITLE = "Paper templates", + BOOKTITLE = "TEMPLATE'06, 1st International Conference on Template Production", + YEAR = "1999", + publisher = "SCITEPRESS", + file = F +} + +@BOOK{Smith98, + AUTHOR = "J. Smith", + TITLE = "The Book", + PUBLISHER = "The publishing company", + YEAR = "1998", + address = "London", + edition = "2nd", + file = F +} + + +@ARTICLE{Torkestani, + author = "J. A. Torkestani", + title = "An adaptive energy-efficient area coverage algorithm for wireless sensor networks ", + journal = {Ad Hoc Networks}, + volume = {11}, + number = {6}, + pages = {1655-1666}, + year = {2013}, + } + +@ARTICLE{Zhang, + author = "L. Zhang and Q. Zhu and J. Wang", + title = "Adaptive Clustering for Maximizing Network Lifetime and Maintaining Coverage ", + journal = {JOURNAL OF NETWORKS}, + volume = {8}, + number = {3}, + pages = {616-622}, + year = {2013}, + } + +@ARTICLE{pc10, + author = "T.V. Padmavathy and M. Chitra", + title = "Extending the Network Lifetime of Wireless Sensor Networks Using Residual Energy Extraction-Hybrid Scheduling Algorithm", + JOURNAL = {Int. J. of Communications, Network and System Sciences}, + VOLUME = {3}, + NUMBER = {1}, +PAGES = {98-106}, +YEAR = {2010}, + } + + + +@ARTICLE{Zhixin, + author = "Z. Liu and Q. Zheng and L. Xue and X. Guan", + title = "A distributed energy-efficient clustering algorithm with improved coverage in +wireless sensor networks", + JOURNAL = {Future Generation Computer Systems}, + VOLUME = {28}, + NUMBER = {5}, + PAGES = {780-790}, + YEAR = {2012}, + } + +@ARTICLE{Bang, + author = "B. Wang and H. B. Lim and D. Ma ", + title = "A coverage-aware clustering protocol for wireless sensor networks", + JOURNAL = {Computer Networks}, + VOLUME = {56}, + NUMBER = {5}, + PAGES = {1599-1611}, + YEAR = {2012}, + } + + + +@book{Akyildiz02, + author = {I. F. Akyildiz and M. C. Vuran}, + title = {Wireless Sensor Networks}, + publisher = {John Wiley and Sons Ltd.}, + year = {2010}, +} + +@book{Sudip03, + author = {S. Misra and I. Woungang and S. C. Misra}, + title = {Guide to Wireless Sensor Networks}, + publisher = {Springer-Verlag London Limited}, + year = {2009}, +} + +@book{Nayak04, + author = {A. Nayak and I. Stojmenovic}, + title = {Wireless Sensor and Actuator Networks: Algorithms and Protocols for Scalable Coordination and Data Communication}, + publisher = {John Wiley and Sons, Inc}, + year = {2010}, +} + + + +@ARTICLE{Huang:2003:CPW:941350.941367, + author = "C.-F. HUANG and Y.-C. TSENG", + title = "The Coverage Problem in a Wireless Sensor Network", + JOURNAL = {Mobile Networks and Applications}, + VOLUME = {10}, + NUMBER = {4}, + PAGES = {519-528}, + YEAR = {2005}, + } + + +@ARTICLE{Zhang05, + author = {H. Zhang and J. C. Hou}, + title = {Maintaining Sensing Coverage and Connectivity in Large Sensor Networks}, + journal = {Ad Hoc {\&} Sensor Wireless Networks}, + volume = {1}, + number = {1-2}, + year = {2005}, + +} + +@ARTICLE{HeinzelmanCB02, + author = {W. B. Heinzelman and A. P. Chandrakasan and H. Balakrishnan}, + title = {An application-specific protocol architecture for wireless microsensor networks}, + journal = {IEEE Transactions on Wireless Communications}, + volume = {1}, + number = {4}, + pages = {660-670}, + year = {2002}, +} + + +@inproceedings{pedraza2006, + author = {F. Pedraza and A. L. Medaglia and A. Garcia}, + title = {Efficient coverage algorithms for wireless sensor networks}, + booktitle = {Proceedings of the 2006 Systems and Information Engineering Design Symposium}, + pages = {78-83}, + YEAR = {2006}, +} + +@PhDThesis{chin2007, +author = {C. T. Vu}, +title = {DISTRIBUTED ENERGY-EFFICIENT SOLUTIONS FOR AREA COVERAGE PROBLEMS IN WIRELESS SENSOR NETWORKS}, +school = {Georgia State University}, +year = {2009}, +} + +@ARTICLE{varga, +author = {A. Varga}, +title = {OMNeT++ Discrete Event Simulation System}, +journal = {Available: http://www.omnetpp.org}, +year = {2003}, +} + + +@ARTICLE{die09, + author = {Isabel Dietrich and + Falko Dressler}, + title = {On the lifetime of wireless sensor networks}, + journal = {TOSN}, + volume = {5}, + number = {1}, + year = {2009}, + ee = {http://doi.acm.org/10.1145/1464420.1464425}, + bibsource = {DBLP, http://dblp.uni-trier.de} +} + + + +@ARTICLE{mulligan2010coverage, + title={Coverage in Wireless Sensor Networks: A Survey.}, + author={Mulligan, Raymond and Ammari, Habib M}, + journal={Network Protocols \& Algorithms}, + volume={2}, + number={2}, + year={2010} +} + + +@phdthesis{vu2009distributed, + title={Distributed energy-efficient solutions for area coverage problems in wireless sensor networks}, + author={Vu, Chinh Trung}, + year={2009}, + school={GEORGIA STATE UNIVERSITY} +} + + +@ARTICLE{raghunathan2002energy, + title={Energy-aware wireless microsensor networks}, + author={Raghunathan, Vijay and Schurgers, Curt and Park, Sung and Srivastava, Mani B}, + journal={Signal Processing Magazine, IEEE}, + volume={19}, + number={2}, + pages={40--50}, + year={2002}, + publisher={IEEE} +} + +@ARTICLE{ChinhVu, +author = {Chinh Vu and Shan Gao and Wiwek Deshmukh and Yingshu Li}, +title = {Distributed Energy-Efficient Scheduling Approach for K-Coverage in Wireless Sensor Networks}, +journal ={MILCOM}, +volume = {0}, +isbn = {1-4244-0617-X}, +year = {2006}, +pages = {1-7}, +doi = {http://doi.ieeecomputersociety.org/10.1109/MILCOM.2006.302146}, +publisher = {IEEE Computer Society}, +address = {Los Alamitos, CA, USA}, +} + + +@ARTICLE{ghosh2008coverage, + title={Coverage and connectivity issues in wireless sensor networks: A survey}, + author={Ghosh, Amitabha and Das, Sajal K}, + journal={Pervasive and Mobile Computing}, + volume={4}, + number={3}, + pages={303--334}, + year={2008}, + publisher={Elsevier} +} + + + +@ARTICLE{yang2014novel, +author={Changlin Yang and Kwan-Wu Chin}, +journal={Communications Letters, IEEE}, +title={Novel Algorithms for Complete Targets Coverage in Energy Harvesting Wireless Sensor Networks}, +year={2014}, +month={January}, +volume={18}, +number={1}, +pages={118-121}, +keywords={energy harvesting;linear programming;secondary cells;telecommunication power supplies;wireless sensor networks;MUA;WSN;activation schedule;complete targets coverage;energy conservation;energy harvesting wireless sensor networks;linear programming based solution;maximum utility algorithm;network lifetime maximization problem;recharging opportunities;sensor nodes;sleep state;time interval;wake-up schedule;Batteries;Energy harvesting;Erbium;Monitoring;Schedules;Sensors;Wireless sensor networks;Wireless sensor network;energy harvesting;targets coverage}, +doi={10.1109/LCOMM.2013.111513.132436}, +ISSN={1089-7798},} + +@ARTICLE{HeShibo, +author={He, Shibo and Gong, Xiaowen and Zhang, Junshan and Chen, Jiming and Sun, Youxian}, +journal={Wireless Communications, IEEE Transactions on}, +title={Curve-Based Deployment for Barrier Coverage in Wireless Sensor Networks}, +year={2014}, +month={February}, +volume={13}, +number={2}, +pages={724-735}, +keywords={Algorithm design and analysis;Approximation algorithms;Approximation methods;Educational institutions;Sensors;Wireless communication;Wireless sensor networks;Barrier coverage;curved-based deployment;deployment algorithms;optimal deployment curve}, +doi={10.1109/TWC.2013.121813.130198}, +ISSN={1536-1276}, +} + + + +@inproceedings{Zorbas2007, + author = {D. Zorbas and D. Glynos and P. Kotzanikolaou and C. Douligeris}, + title = {B\{GOP\}: an adaptive coverage algorithm for wireless sensor networks}, + booktitle = {Proceedings of the 13th European Wireless Conference}, + series = {EW'07}, + year = {2007}, + location = {Paris, France}, + +} + +@ARTICLE{zorbas2010solving, + title={Solving coverage problems in wireless sensor networks using cover sets}, + author={Zorbas, Dimitrios and Glynos, Dimitris and Kotzanikolaou, Panayiotis and Douligeris, Christos}, + journal={Ad Hoc Networks}, + volume={8}, + number={4}, + pages={400-415}, + year={2010}, + publisher={Elsevier}, +} + +@INPROCEEDINGS{Slijepcevic01powerefficient, + author = {S. Slijepcevic and M. Potkonjak}, + title = {Power Efficient Organization of Wireless Sensor Networks}, + booktitle = {IEEE International conference on Communications}, + year = {2001}, + pages = {472-476} +} + +@ARTICLE{cardei2006energy, + title={Energy-efficient coverage problems in wireless ad-hoc sensor networks}, + author={Cardei, Mihaela and Wu, Jie}, + journal={Computer communications}, + volume={29}, + number={4}, + pages={413-420}, + year={2006}, + publisher={Elsevier} +} + +@inproceedings{cardei2005energy, + title={Energy-efficient target coverage in wireless sensor networks}, + author={Cardei, Mihaela and Thai, My T and Li, Yingshu and Wu, Weili}, + booktitle={INFOCOM 2005. 24th Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings IEEE}, + volume={3}, + pages={1976-1984}, + year={2005}, + organization={IEEE} +} + +@ARTICLE{cardei2005improving, + title={Improving wireless sensor network lifetime through power aware organization}, + author={Cardei, Mihaela and Du, Ding-Zhu}, + journal={Wireless Networks}, + volume={11}, + number={3}, + pages={333-340}, + year={2005}, + publisher={Springer-Verlag New York, Inc.} +} + +@inproceedings{abrams2004set, + title={Set k-cover algorithms for energy efficient monitoring in wireless sensor networks}, + author={Abrams, Zo{\"e} and Goel, Ashish and Plotkin, Serge}, + booktitle={Proceedings of the 3rd international symposium on Information processing in sensor networks}, + pages={424-432}, + year={2004}, + organization={ACM} +} + +@ARTICLE{pujari2011high, + title={High-Energy-First (HEF) Heuristic for Energy-Efficient Target Coverage Problem.}, + author={Pujari, Arun K}, + journal={International Journal of Ad Hoc, Sensor \& Ubiquitous Computing}, + volume={2}, + number={1}, + year={2011} +} + +@INPROCEEDINGS{berman04, + author = {P. Berman and G. Calinescu}, + title = {Power Efficient Monitoring Management in Sensor Networks}, + booktitle = {Proceedings of IEEE Wireless Communication and Networking Conference (WCNC'04)}, + year = {2004}, + pages = {2329--2334} +} + +@inproceedings{Gallais06, + author = {Gallais, Antoine and Carle, Jean and Simplot-Ryl, David and Stojmenovic, Ivan}, + title = {Localized Sensor Area Coverage with Low Communication Overhead}, + booktitle = {Proceedings of the Fourth Annual IEEE International Conference on Pervasive Computing and Communications}, + year = {2006}, + pages = {328-337}, + +} + +@inproceedings{Tian02, + author = {Tian, Di and Georganas, Nicolas D.}, + title = {A coverage-preserving node scheduling scheme for large wireless sensor networks}, + booktitle = {Proceedings of the 1st ACM international workshop on Wireless sensor networks and applications}, + series = {WSNA '02}, + year = {2002}, + pages = {32-41}, + publisher = {ACM}, +} + +@inproceedings{Ye03, + author = {Ye, Fan and Zhong, Gary and Cheng, Jesse and Lu, Songwu and Zhang, Lixia}, + title = {PEAS: A Robust Energy Conserving Protocol for Long-lived Sensor Networks}, + booktitle = {Proceedings of the 23rd International Conference on Distributed Computing Systems}, + series = {ICDCS'03}, + year = {2003}, + pages = {28-37}, +} + + +@INPROCEEDINGS{Berman05efficientenergy, + author = {P. Berman and G. Calinescu and C. Shah and A. Zelikovsky}, + title = {Efficient energy management in sensor networks}, + booktitle = {Ad Hoc and Sensor Networks. Nova Science Publishers}, + year = {2005}, + publisher = {Nova Science Publisher} +} + +@inproceedings{lu2003coverage, + title={Coverage-aware self-scheduling in sensor networks}, + author={Lu, Jun and Suda, Tatsuya}, + booktitle={Computer Communications, 2003. CCW 2003. Proceedings. 2003 IEEE 18th Annual Workshop on}, + pages={117--123}, + year={2003}, + organization={IEEE} +} + +@incollection{prasad2007distributed, + title={Distributed algorithms for lifetime of wireless sensor networks based on dependencies among cover sets}, + author={Prasad, Sushil K and Dhawan, Akshaye}, + booktitle={High Performance Computing--HiPC 2007}, + pages={381-392}, + year={2007}, + publisher={Springer} +} + +@inproceedings{cardei2005maximum, + title={Maximum network lifetime in wireless sensor networks with adjustable sensing ranges}, + author={Cardei, Mihaela and Wu, Jie and Lu, Mingming and Pervaiz, Mohammad O}, + booktitle={Wireless And Mobile Computing, Networking And Communications, 2005.(WiMob'2005), IEEE International Conference on}, + volume={3}, + pages={438--445}, + year={2005}, + organization={IEEE} +} + +@inproceedings{garg98, + author = {Garg, Naveen and Koenemann, Jochen}, + title = {Faster and Simpler Algorithms for Multicommodity Flow and other Fractional Packing Problems.}, + booktitle = {Proceedings of the 39th Annual Symposium on Foundations of Computer Science}, + series = {FOCS '98}, + year = {1998}, + pages = {300-309}, +} + +@article{wang2010clique, + title={A clique base node scheduling method for wireless sensor networks}, + author={Wang, Lei and Wei, Ruizhong and Lin, Yaping and Wang, Bo}, + journal={Journal of Network and Computer Applications}, + volume={33}, + number={4}, + pages={383--396}, + year={2010}, + publisher={Elsevier} +} + +@article{yardibi2010distributed, + title={A distributed activity scheduling algorithm for wireless sensor networks with partial coverage}, + author={Yardibi, Tarik and Karasan, Ezhan}, + journal={Wireless Networks}, + volume={16}, + number={1}, + pages={213--225}, + year={2010}, + publisher={Springer} +} + +@article{conti2014mobile, + title={Mobile ad hoc networking: milestones, challenges, and new research directions}, + author={Conti, Marco and Giordano, Silvia}, + journal={Communications Magazine, IEEE}, + volume={52}, + number={1}, + pages={85--96}, + year={2014}, + publisher={IEEE} +} + +@inproceedings{idrees2014coverage, + title={Coverage and Lifetime Optimization in Heterogeneous Energy Wireless Sensor Networks}, + author={Idrees, Ali Kadhum and Deschinkel, Karine and Salomon, Michel and Couturier, Rapha{\"e}l}, + booktitle={ICN 2014, The Thirteenth International Conference on Networks}, + pages={49--54}, + year={2014} +} + +@inproceedings{xu2001geography, + title={Geography-informed energy conservation for ad hoc routing}, + author={Xu, Ya and Heidemann, John and Estrin, Deborah}, + booktitle={Proceedings of the 7th annual international conference on Mobile computing and networking}, + pages={70--84}, + year={2001}, + organization={ACM} +} + +@article{zhou2009variable, + title={Variable radii connected sensor cover in sensor networks}, + author={Zhou, Zongheng and Das, Samir R and Gupta, Himanshu}, + journal={ACM Transactions on Sensor Networks (TOSN)}, + volume={5}, + number={1}, + pages={8}, + year={2009}, + publisher={ACM} +} + +@article{wang2009parallel, + title={Parallel energy-efficient coverage optimization with maximum entropy clustering in wireless sensor networks}, + author={Wang, Xue and Ma, Junjie and Wang, Sheng}, + journal={Journal of Parallel and Distributed Computing}, + volume={69}, + number={10}, + pages={838--847}, + year={2009}, + publisher={Elsevier} +} + +@article{yan2008design, + title={Design and optimization of distributed sensing coverage in wireless sensor networks}, + author={Yan, Ting and Gu, Yu and He, Tian and Stankovic, John A}, + journal={ACM Transactions on Embedded Computing Systems (TECS)}, + volume={7}, + number={3}, + pages={33}, + year={2008}, + publisher={ACM} +} + +@article{he2012leveraging, + title={Leveraging prediction to improve the coverage of wireless sensor networks}, + author={He, Shibo and Chen, Jiming and Li, Xu and Shen, Xuemin and Sun, Youxian}, + journal={Parallel and Distributed Systems, IEEE Transactions on}, + volume={23}, + number={4}, + pages={701-712}, + year={2012}, + publisher={IEEE} +} + +@article{esnaashari2010learning, + title={A learning automata based scheduling solution to the dynamic point coverage problem in wireless sensor networks}, + author={Esnaashari, Mehdi and Meybodi, Mohammad Reza}, + journal={Computer Networks}, + volume={54}, + number={14}, + pages={2410--2438}, + year={2010}, + publisher={Elsevier} +} + + +@ARTICLE{Misra, + author = "S. Misra and M. P. Kumar and M. S. Obaidat", + title = "Connectivity preserving localized coverage algorithm for area monitoring using +wireless sensor networks ", + JOURNAL = {Computer Communications}, + VOLUME = {34}, + NUMBER = {12}, + PAGES = {1484-1496}, + YEAR = {2011}, +} + + + + +@article{rizvi2012a1, + title={A1: An energy efficient topology control algorithm for connected area coverage in wireless sensor networks}, + author={Rizvi, Sajjad and Qureshi, Hassaan Khaliq and Ali Khayam, Syed and Rakocevic, Veselin and Rajarajan, Muttukrishnan}, + journal={Journal of Network and Computer Applications}, + volume={35}, + number={2}, + pages={597--605}, + year={2012}, + publisher={Elsevier} +} + +@article{tran2009novel, + title={A novel gossip-based sensing coverage algorithm for dense wireless sensor networks}, + author={Tran-Quang, Vinh and Miyoshi, Takumi}, + journal={Computer Networks}, + volume={53}, + number={13}, + pages={2275--2287}, + year={2009}, + publisher={Elsevier} +} + +@ARTICLE{wang2011coverage, + title={Coverage problems in sensor networks: A survey}, + author={Wang, Bang}, + journal={ACM Computing Surveys (CSUR)}, + volume={43}, + number={4}, + pages={32}, + year={2011}, + publisher={ACM} +} + + +@article{luo2014parameterized, + title={Parameterized complexity of max-lifetime target coverage in wireless sensor networks}, + author={Luo, Weizhong and Wang, Jianxin and Guo, Jiong and Chen, Jianer}, + journal={Theoretical Computer Science}, + volume={518}, + pages={32--41}, + year={2014}, + publisher={Elsevier} +} + +@article{jarray2013lagrangean, + title={A Lagrangean-based heuristics for the target covering problem in wireless sensor network}, + author={Jarray, Fethi}, + journal={Applied Mathematical Modelling}, + volume={37}, + number={10}, + pages={6780--6785}, + year={2013}, + publisher={Elsevier} +} + +@article{naderan2013sensing, + title={Sensing task assignment via sensor selection for maximum target coverage in WSNs}, + author={Naderan, Marjan and Dehghan, Mehdi and Pedram, Hossein}, + journal={Journal of Network and Computer Applications}, + volume={36}, + number={1}, + pages={262--273}, + year={2013}, + publisher={Elsevier} +} + +@article{erdelj2013multiple, + title={Multiple point of interest discovery and coverage with mobile wireless sensors}, + author={Erdelj, Milan and Loscri, Valeria and Natalizio, Enrico and Razafindralambo, Tahiry}, + journal={Ad Hoc Networks}, + volume={11}, + number={8}, + pages={2288--2300}, + year={2013}, + publisher={Elsevier} +} + +@article{tian2014distributed, + title={Distributed Multitarget Probabilistic Coverage Control Algorithm for Wireless Sensor Networks}, + author={Tian, Ying and Ou, Yang and Hamid, Reza Karimi and Liu, Yan Tao and Han, Jian Qun}, + journal={Mathematical Problems in Engineering}, + volume={2014}, + pages={1--8}, + year={2014}, + publisher={Hindawi Publishing Corporation} +} + +@article{castano2013column, + title={A column generation approach to extend lifetime in wireless sensor networks with coverage and connectivity constraints}, + author={Casta{\~n}o, Fabian and Rossi, Andr{\'e} and Sevaux, Marc and Velasco, Nubia}, + journal={Computers \& Operations Research}, + year={2013}, + publisher={Elsevier} +} + +@article{yu2013cwsc, + title={CWSC: Connected< i> k-coverage working sets construction algorithm in wireless sensor networks}, + author={Yu, Jiguo and Deng, Xiu and Yu, Dongxiao and Wang, Guanghui and Gu, Xin}, + journal={AEU-International Journal of Electronics and Communications}, + volume={67}, + number={11}, + pages={937--946}, + year={2013}, + publisher={Elsevier} +} + +@article{cheng2014achieving, + title={Achieving Asymmetric Sensing Coverage for Duty Cycled Wireless Sensor Networks}, + author={Cheng, Long and He, Tian and Niu, Jianwei and Du, David HC}, + journal={IEEE Transactions on Parallel and Distributed Systems}, + pages={1--11}, + year={2014}, + publisher={IEEE} +} + +@article{yang2013energy, + title={Energy-Efficient Probabilistic Area Coverage in Wireless Sensor Networks}, + author={Yang, Qianqian and He, Shibo and Li, Junkun and Chen, Jiming and Sun, Youxian}, + journal={IEEE Transactions on Vehicular Technology}, + year={2013}, + publisher={IEEE} +} + +@inproceedings{kim2013maximum, + title={Maximum lifetime of reinforced barrier-coverage in Wireless Sensor Networks}, + author={Kim, Hyunbum and Cobb, Jorge A}, + booktitle={Networks (ICON), 2013 19th IEEE International Conference on}, + pages={1--6}, + year={2013}, + organization={IEEE} +} + +@inproceedings{diongue2013alarm, + title={ALARM: An energy aware sleep scheduling algorithm for lifetime maximization in wireless sensor networks}, + author={Diongue, Dame and Thiare, Ousmane}, + booktitle={Wireless Technology and Applications (ISWTA), 2013 IEEE Symposium on}, + pages={74--79}, + year={2013}, + organization={IEEE} +} + +@inproceedings{chang2012joint, + title={Joint energy-balanced and full-coverage mechanism using sensing range control for maximizing network lifetime in WSNs}, + author={Chang, Chih-Yung and Yu, Gwo-Jong and Lin, Chih-Yu and Wang, Tzu-Lin}, + booktitle={Ubiquitous and Future Networks (ICUFN), 2012 Fourth International Conference on}, + pages={34--39}, + year={2012}, + organization={IEEE} +} + +@inproceedings{qu2013distributed, + title={A distributed area coverage algorithm for maintenance of randomly distributed sensors with adjustable sensing range}, + author={Qu, Yipeng and Georgakopoulos, Stavros V}, + booktitle={Global Communications Conference (GLOBECOM), 2013 IEEE}, + pages={286--291}, + year={2013}, + organization={IEEE} +} + +@inproceedings{al2013energy, + title={Energy-efficient k-coverage scheduling algorithm for sensor networks with adjustable sensing range}, + author={Al-Shalabi, Ahmed Abdullah and Manaf, Mazani}, + booktitle={Wireless Technology and Applications (ISWTA), 2013 IEEE Symposium on}, + pages={316--321}, + year={2013}, + organization={IEEE} +} + +@inproceedings{kim2012sleep, + title={On sleep-wakeup scheduling of non-penetrable barrier-coverage of wireless sensors}, + author={Kim, Donghyun and Kim, Jiwoong and Li, Deying and Kwon, Sung-Sik and Tokuta, Alade O}, + booktitle={Global Communications Conference (GLOBECOM), 2012 IEEE}, + pages={321--327}, + year={2012}, + organization={IEEE} +} + +@article{li2013survey, + title={A Survey on Topology Control in Wireless Sensor Networks: Taxonomy, Comparative Study, and Open Issues}, + author={Li, Mo and Vasilakos, Athanasios V}, + journal={Proceedings of the IEEE}, + volume={101}, + number={12}, + year={2013} +} + + + diff --git a/Example.tex b/Example.tex new file mode 100644 index 0000000..5e1fc0d --- /dev/null +++ b/Example.tex @@ -0,0 +1,735 @@ +\documentclass[a4paper,twoside]{article} + +\usepackage{epsfig} +\usepackage{subfigure} +\usepackage{calc} +\usepackage{amssymb} +\usepackage{amstext} +\usepackage{amsmath} +\usepackage{amsthm} +\usepackage{multicol} +\usepackage{pslatex} +\usepackage{apalike} +\usepackage{SCITEPRESS} +\usepackage[small]{caption} + +\usepackage[linesnumbered,ruled,vlined,commentsnumbered]{algorithm2e} +\usepackage{mathtools} + +\subfigtopskip=0pt +\subfigcapskip=0pt +\subfigbottomskip=0pt + +\begin{document} + +%\title{Authors' Instructions \subtitle{Preparation of Camera-Ready Contributions to SCITEPRESS Proceedings} } + +\title{Distributed Lifetime Coverage Optimization Protocol \\in Wireless Sensor Networks} + +\author{\authorname{Ali Kadhum Idrees, Karine Deschinkel, Michel Salomon, and Rapha\"el Couturier} +\affiliation{FEMTO-ST Institute, UMR 6174 CNRS, University of Franche-Comte, Belfort, France} +%\affiliation{\sup{2}Department of Computing, Main University, MySecondTown, MyCountry} +\email{ali.idness@edu.univ-fcomte.fr, $\lbrace$karine.deschinkel, michel.salomon, raphael.couturier$\rbrace$@univ-fcomte.fr} +%\email{\{f\_author, s\_author\}@ips.xyz.edu, t\_author@dc.mu.edu} +} + +\keywords{Wireless Sensor Networks, Area Coverage, Network lifetime, +Optimization, Scheduling.} + +\abstract{One of the fundamental challenges in Wireless Sensor Networks (WSNs) is the +coverage preservation and the extension of the network lifetime continuously and +effectively when monitoring a certain area (or region) of interest. In this +paper, a Distributed Lifetime Coverage Optimization protocol (DiLCO) to maintain +the coverage and to improve the lifetime in wireless sensor networks is +proposed. The area of interest is first divided into subregions using a +divide-and-conquer method and then the DiLCO protocol is distributed on the +sensor nodes in each subregion. The DiLCO combines two efficient techniques: +leader election for each subregion, followed by an optimization-based planning +of activity scheduling decisions for each subregion. The proposed DiLCO works +into rounds during which a small number of nodes, remaining active for sensing, +is selected to ensure coverage so as to maximize the lifetime of wireless sensor +network. Each round consists of four phases: (i)~Information Exchange, +(ii)~Leader Election, (iii)~Decision, and (iv)~Sensing. The decision process is +carried out by a leader node, which solves an integer program. Compared with +some existing protocols, simulation results show that the proposed protocol can +prolong the network lifetime and improve the coverage performance effectively.} + +\onecolumn \maketitle \normalsize \vfill + +\section{\uppercase{Introduction}} +\label{sec:introduction} +\noindent +Energy efficiency is very important issue in WSNs since sensors are powered by batteries. Therefore, reducing energy consumption and extending network lifetime are the main challenges in the design of WSNs. One of the major scientific research challenges in WSNs, which has been addressed by a large amount of literature during the last few years, is the design of energy efficient approaches for coverage and connectivity~\cite{conti2014mobile}. +Coverage reflects how well a sensor field is monitored, is one of the most important performance metrics to measure WSNs. The most discussed coverage problems in literature can be classified +into three types \cite{li2013survey}: area (blanket) coverage (where every +point inside an area is to be monitored), target (sweep) coverage (where the main objective is to cover only a finite number of discrete +points called targets), and barrier coverage (The problem of preventing an intruder from entering a region of interest is referred to as the barrier coverage). + It is required to monitor the area of interest efficiently~\cite{Nayak04}, but in the same time the power consumption should be minimized. Since sensor nodes have a limited batteries life~\cite{Sudip03} and since it is impossible, difficult or expensive to be recharged and /or replaced after they are deployed in remote, hostile, or unpractical environments, Therefore, it is desired that the WSNs are deployed with high densities so as to exploit the overlapping sensing regions of some sensor nodes to save energy by turning off some of them during the sensing phase to prolong the network lifetime by elaborate managing the duty cycle of nodes in WSN. + +In this paper we concentrate on the area coverage problem with the objective of +maximizing the network lifetime by using DiLCO protocol to maintain the coverage and to improve the lifetime in WSNs. The area of interest is divided into subregions using divide-and-conquer method and an activity scheduling based optimization for sensor nodes is planned by the elected leader in each subregion. In fact, the nodes in a subregion can be seen as a cluster where each node sends sensing data to the cluster head or the sink node. Furthermore, the activities in a subregion/cluster can continue even if another cluster stops due to too many node failures. Our DiLCO protocol considers rounds, where a round starts with a discovery phase to exchange information between sensors of the subregion, in order to choose in a suitable manner a sensor node to carry out a coverage strategy. Our DiLCO protocol involves solving an integer program, which provides the activation of the sensors for the sensing phase of the current round. + +The remainder of the paper is organized as follows. The next section reviews the related work in the field. Section~\ref{sec:The DiLCO Protocol Description} is devoted to the DiLCO protocol Description. Section~\ref{cp} gives the coverage model +formulation which is used to schedule the activation of sensors. +Section~\ref{sec:Simulation Results and Analysis} shows the simulation results. Finally, we give concluding remarks and some suggestions for +future works in Section~\ref{sec:Conclusion and Future Works}. + +\section{\uppercase{Literature Review}} +\label{sec:Literature Review} +\noindent In this section, we summarize some related works regarding coverage lifetime maximization and scheduling, and distinguish our DiLCO protocol from the works presented in the literature. + +The work presented in~\cite{luo2014parameterized,tian2014distributed} try to solve the target coverage problem so as to extend the network lifetime since it is easy to verify the coverage status of discreet target. +The work proposed in~\cite{kim2013maximum} considered the barrier-coverage problem in WSNs. The final goal is to maximize the network lifetime such that any penetration of the intruder is detected. +In \cite{ChinhVu}, the authors are proposed a localized and distributed greedy algorithm named DESK for generating non-disjoint cover sets which provide the k-coverage for the whole network. +Our Work in~\cite{idrees2014coverage} is proposed a coverage optimization protocol to improve the lifetime in heterogeneous energy wireless sensor networks. In this work, the coverage protocol distributed in each sensor node in the subregion but the optimization take place over the the whole subregion. We are considered only distributing the coverage protocol over two subregions. +The work presented in ~\cite{Zhang} focuses on a distributed clustering method, which aims to extend the network lifetime, while the coverage is ensured. + +The work proposed by \cite{qu2013distributed} considered the coverage problem in WSNs where each sensor has variable sensing radius. The final objective is to maximize the network coverage lifetime in WSNs. + + +\iffalse +Casta{\~n}o et al.~\cite{castano2013column} proposed a multilevel approach based on column generation (CG) to extend the network lifetime with connectivity and coverage constraints. They are included two heuristic methods within the CG framework so as to accelerate the solution process. +In \cite{diongue2013alarm}, diongue is proposed an energy Aware sLeep scheduling AlgoRithm for lifetime maximization in WSNs (ALARM) algorithm for coverage lifetime maximization in wireless sensor networks. ALARM is sensor node scheduling approach for lifetime maximization in WSNs in which it schedule redundant nodes according to the weibull distribution taking into consideration frequent nodes failure. +Yu et al.~\cite{yu2013cwsc} presented a connected k-coverage working sets construction +approach (CWSC) to maintain k-coverage and connectivity. This approach try to select the minimum number of connected sensor nodes that can provide k-coverage ($k \geq 1$). +In~\cite{cheng2014achieving}, the authors are presented a unified sensing architecture for duty cycled sensor networks, called uSense, which comprises three ideas: Asymmetric Architecture, Generic Switching and Global Scheduling. The objective is to provide a flexible and efficient coverage in sensor networks. +\fi +In~\cite{yang2013energy}, the authors are investigated full area coverage problem +under the probabilistic sensing model in the sensor networks. %They are designed $\varepsilon-$full area coverage optimization (FCO) algorithm to select a subset of sensors to provide probabilistic area coverage dynamically so as to extend the network lifetime. +In \cite{xu2001geography}, Xu et al. proposed a Geographical Adaptive Fidelity (GAF) algorithm, which uses geographic location information to divide the area of interest into fixed square grids. Within each grid, it keeps only one node staying awake to take the responsibility of sensing and communication. + +The main contributions of our DiLCO Protocol can be summarized as follows: +(1) The distributed optimization over the subregions in the area of interest, +(2) The distributed dynamic leader election at each round by each sensor node in the subregion, +(3) The primary point coverage model to represent each sensor node in the network, +(4) The activity scheduling based optimization on the subregion, which are based on the primary point coverage model to activate as less number as possible of sensor nodes to take the mission of the coverage in each subregion, +(5) The improved energy consumption model. + + + +\section{ The DiLCO Protocol Description} +\label{sec:The DiLCO Protocol Description} + +\noindent In this section, we introduce a Distributed Lifetime Coverage Optimization protocol, which is called DiLCO. It is distributed on each subregion in the area of interest. It is based on two efficient techniques: network leader election and sensor activity scheduling for coverage preservation and energy conservation continuously and efficiently to maximize the lifetime in the network. +\iffalse The main features of our DiLCO protocol: +i)It divides the area of interest into subregions by using divide-and-conquer concept, ii)It requires only the information of the nodes within the subregion, iii) it divides the network lifetime into rounds, iv)It based on the autonomous distributed decision by the nodes in the subregion to elect the Leader, v)It apply the activity scheduling based optimization on the subregion, vi) it achieves an energy consumption balancing among the nodes in the subregion by selecting different nodes as a leader during the network lifetime, vii) It uses the optimization to select the best representative set of sensors in the subregion by optimize the coverage and the lifetime over the area of interest, viii)It uses our proposed primary point coverage model, which represent the sensing range of the sensor as a set of points, which are used by the our optimization algorithm, ix) It uses a simple energy model that takes communication, sensing and computation energy consumptions into account to evaluate the performance of our protocol. +\fi +\subsection{ Assumptions and Models} +\noindent We consider a randomly and uniformly deployed network consisting of +static wireless sensors. The wireless sensors are deployed in high +density to ensure initially a high coverage ratio of the interested area. We +assume that all nodes are homogeneous in terms of communication and +processing capabilities and heterogeneous in term of energy provision. +The location information is available to the sensor node either +through hardware such as embedded GPS or through location discovery +algorithms. We consider a boolean disk coverage model which is the most +widely used sensor coverage model in the literature. Each sensor has a +constant sensing range $R_s$. All space points within a disk centered +at the sensor with the radius of the sensing range is said to be +covered by this sensor. We also assume that the communication range $R_c \geq 2R_s$. +In fact, Zhang and Zhou~\cite{Zhang05} proved that if the transmission range fulfills the +previous hypothesis, a complete coverage of a convex area implies +connectivity among the working nodes in the active mode. + +\indent Instead of working with the coverage area, we consider for each +sensor a set of points called primary points~\cite{idrees2014coverage}. We also assume that the +sensing disk defined by a sensor is covered if all the primary points of +this sensor are covered. + +\iffalse +By knowing the position (point center: ($p_x,p_y$)) of a wireless +sensor node and its $R_s$, we calculate the primary points directly +based on the proposed model. We use these primary points (that can be +increased or decreased if necessary) as references to ensure that the +monitored region of interest is covered by the selected set of +sensors, instead of using all the points in the area. + +\indent We can calculate the positions of the selected primary +points in the circle disk of the sensing range of a wireless sensor +node (see figure~\ref{fig1}) as follows:\\ +$(p_x,p_y)$ = point center of wireless sensor node\\ +$X_1=(p_x,p_y)$ \\ +$X_2=( p_x + R_s * (1), p_y + R_s * (0) )$\\ +$X_3=( p_x + R_s * (-1), p_y + R_s * (0)) $\\ +$X_4=( p_x + R_s * (0), p_y + R_s * (1) )$\\ +$X_5=( p_x + R_s * (0), p_y + R_s * (-1 )) $\\ +$X_6= ( p_x + R_s * (\frac{-\sqrt{2}}{2}), p_y + R_s * (0)) $\\ +$X_7=( p_x + R_s * (\frac{\sqrt{2}}{2}), p_y + R_s * (0))$\\ +$X_8=( p_x + R_s * (\frac{-\sqrt{2}}{2}), p_y + R_s * (\frac{-\sqrt{2}}{2})) $\\ +$X_9=( p_x + R_s * (\frac{\sqrt{2}}{2}), p_y + R_s * (\frac{-\sqrt{2}}{2})) $\\ +$X_{10}=( p_x + R_s * (\frac{-\sqrt{2}}{2}), p_y + R_s * (\frac{\sqrt{2}}{2})) $\\ +$X_{11}=( p_x + R_s * (\frac{\sqrt{2}}{2}), p_y + R_s * (\frac{\sqrt{2}}{2})) $\\ +$X_{12}=( p_x + R_s * (0), p_y + R_s * (\frac{\sqrt{2}}{2})) $\\ +$X_{13}=( p_x + R_s * (0), p_y + R_s * (\frac{-\sqrt{2}}{2})) $. + + \begin{figure}[h!] +\centering + \begin{multicols}{3} +\centering +%\includegraphics[scale=0.20]{fig21.pdf}\\~ ~ ~ ~ ~(a) +%\includegraphics[scale=0.20]{fig22.pdf}\\~ ~ ~ ~ ~(b) +\includegraphics[scale=0.25]{principles13.pdf}%\\~ ~ ~ ~ ~(c) +%\includegraphics[scale=0.10]{fig25.pdf}\\~ ~ ~(d) +%\includegraphics[scale=0.10]{fig26.pdf}\\~ ~ ~(e) +%\includegraphics[scale=0.10]{fig27.pdf}\\~ ~ ~(f) +\end{multicols} +\caption{Wireless Sensor Node represented by 13 primary points} +%\caption{Wireless Sensor Node represented by (a)5, (b)9 and (c)13 primary points respectively} +\label{fig1} +\end{figure} + +\fi + +\subsection{The Main Idea} +\noindent The area of interest can be divided using the +divide-and-conquer strategy into smaller areas called subregions and +then our coverage protocol will be implemented in each subregion +simultaneously. Our DiLCO protocol works in rounds fashion as shown in figure~\ref{fig2}. +\begin{figure}[ht!] +\centering +\includegraphics[width=75mm]{FirstModel.pdf} % 70mm +\caption{DiLCO protocol} +\label{fig2} +\end{figure} + +Each round is divided into 4 phases : Information (INFO) Exchange, +Leader Election, Decision, and Sensing. For each round there is +exactly one set cover responsible for the sensing task. This protocol is +more reliable against an unexpected node failure because it works +in rounds. On the one hand, if a node failure is detected before +making the decision, the node will not participate to this phase, and, +on the other hand, if the node failure occurs after the decision, the +sensing task of the network will be temporarily affected: only during +the period of sensing until a new round starts, since a new set cover +will take charge of the sensing task in the next round. The energy +consumption and some other constraints can easily be taken into +account since the sensors can update and then exchange their +information (including their residual energy) at the beginning of each +round. However, the pre-sensing phases (INFO Exchange, Leader +Election, Decision) are energy consuming for some nodes, even when +they do not join the network to monitor the area. +We define two types of packets to be used by our DiLCO protocol. +%\begin{enumerate}[(a)] +\begin{itemize} +\item INFO packet: sent by each sensor node to all the nodes of it's subregion for information exchange. +\item ActiveSleep packet: sent by the leader to all the nodes in the same of it's subregion to inform them to be Active or Sleep during the sensing phase. +\end{itemize} +%\end{enumerate} + +There are four status for each sensor node in the network +%\begin{enumerate}[(a)] +\begin{itemize} +\item LISTENING: Sensor is waiting for a decision (to be active or not) +\item COMPUTATION: Sensor applies the optimization process as leader +\item ACTIVE: Sensor is active +\item SLEEP: Sensor is turned off +\item COMMUNICATION: Sensor is transmitting or receiving packet +\end{itemize} +%\end{enumerate} +%Below, we describe each phase in more details. +In Algorithm 1, Initially, the sensor node check it's remaining energy in order to participate in the current round. Each sensor node determines it's position and it's subregion based Embedded GPS or Location Discovery Algorithm. After that, all the sensors collect position coordinates, remaining energy $RE_j$, sensor node id, and the number of its one-hop live neighbors during the information exchange. The sensor node enter in listening mode waiting to receive ActiveSleep packet from the leader to take the decision. The selection criteria for the leader in order of priority are: larger number of neighbours, larger remaining energy, and then in case of +equality, larger index. After that, if the sensor node is leader, It will execute the integer program algorithm ( see section~\ref{cp}) to optimize the coverage and the lifetime in it's subregion. After the decision, the optimization approach will select the set of sensor nodes to take the mission of coverage during the sensing phase. + + + + +\iffalse +\subsubsection{Information Exchange Phase} + +Each sensor node $j$ sends its position, remaining energy $RE_j$, and +the number of neighbours $NBR_j$ to all wireless sensor nodes in +its subregion by using an INFO packet and then listens to the packets +sent from other nodes. After that, each node will have information +about all the sensor nodes in the subregion. In our model, the +remaining energy corresponds to the time that a sensor can live in the +active mode. + +\subsubsection{Leader Election Phase} +This step includes choosing the Wireless Sensor Node Leader (WSNL), +which will be responsible for executing the coverage algorithm. Each +subregion in the area of interest will select its own WSNL +independently for each round. All the sensor nodes cooperate to +select WSNL. The nodes in the same subregion will select the leader +based on the received information from all other nodes in the same +subregion. The selection criteria in order of priority are: larger +number of neighbours, larger remaining energy, and then in case of +equality, larger index. + +\subsubsection{Decision phase} +The WSNL will solve an integer program (see section~\ref{cp}) to +select which sensors will be activated in the following sensing phase +to cover the subregion. WSNL will send Active-Sleep packet to each +sensor in the subregion based on the algorithm's results. + + +\subsubsection{Sensing phase} +Active sensors in the round will execute their sensing task to +preserve maximal coverage in the region of interest. We will assume +that the cost of keeping a node awake (or asleep) for sensing task is +the same for all wireless sensor nodes in the network. Each sensor +will receive an Active-Sleep packet from WSNL informing it to stay +awake or to go to sleep for a time equal to the period of sensing until +starting a new round. Algorithm 1, which +will be executed by each node at the beginning of a round, explains how the +Active-Sleep packet is obtained. + +\fi + + +\iffalse +\subsection{DiLCO protocol Algorithm} +we first show the pseudo-code of DiLCO protocol, which is executed by each sensor in the subregion and then describe it in more detail. +\fi + +\begin{algorithm}[h!] + % \KwIn{all the parameters related to information exchange} +% \KwOut{$winer-node$ (: the id of the winner sensor node, which is the leader of current round)} + \BlankLine + %\emph{Initialize the sensor node and determine it's position and subregion} \; + + \If{ $RE_j \geq E_{R}$ }{ + \emph{$s_j.status$ = COMMUNICATION}\; + \emph{Send $INFO()$ packet to other nodes in the subregion}\; + \emph{Wait $INFO()$ packet from other nodes in the subregion}\; + %\emph{UPDATE $RE_j$ for every sent or received INFO Packet}\; + %\emph{ Collect information and construct the list L for all nodes in the subregion}\; + + %\If{ the received INFO Packet = No. of nodes in it's subregion -1 }{ + \emph{LeaderID = Leader election}\; + \If{$ s_j.ID = LeaderID $}{ + \emph{$s_j.status$ = COMPUTATION}\; + \emph{$\left\{\left(X_{1},\dots,X_{k},\dots,X_{J}\right)\right\}$ = + Execute Integer Program Algorithm($J$)}\; + \emph{$s_j.status$ = COMMUNICATION}\; + \emph{Send $ActiveSleep()$ to each node $k$ in subregion} \; + \emph{Update $RE_j $}\; + } + \Else{ + \emph{$s_j.status$ = LISTENING}\; + \emph{Wait $ActiveSleep()$ packet from the Leader}\; + % \emph{After receiving Packet, Retrieve the schedule and the $T$ rounds}\; + \emph{Update $RE_j $}\; + } + % } + } + \Else { Exclude $s_j$ from entering in the current sensing phase} + + % \emph{return X} \; +\caption{DiLCO($s_j$)} +\label{alg:DiLCO} + +\end{algorithm} + +\iffalse +The DiLCO protocol work in rounds and executed at each sensor node in the network , each sensor node can still sense data while being in +LISTENING mode. Thus, by entering the LISTENING mode at the beginning of each round, +sensor nodes still executing sensing task while participating in the leader election and decision phases. More specifically, The DiLCO protocol algorithm works as follow: +Initially, the sensor node check it's remaining energy in order to participate in the current round. Each sensor node determines it's position and it's subregion based Embedded GPS or Location Discovery Algorithm. After that, All the sensors collect position coordinates, current remaining energy, sensor node id, and the number of its one-hop live neighbors during the information exchange. It stores this information into a list L. +The sensor node enter in listening mode waiting to receive ActiveSleep packet from the leader to take the decision. Each sensor node will execute the Algorithm~1 to know who is the leader. After that, if the sensor node is leader, It will execute the integer program algorithm ( see section~\ref{cp}) to optimize the coverage and the lifetime in it's subregion. After the decision, the optimization approach will select the set of sensor nodes to take the mission of coverage during the sensing phase. The leader will send ActiveSleep packet to each sensor node in the subregion to inform him to it's status during the period of sensing, either Active or sleep until the starting of next round. Based on the decision, the leader as other nodes in subregion, either go to be active or go to be sleep during current sensing phase. the other nodes in the same subregion will stay in listening mode waiting the ActiveSleep packet from the leader. After finishing the time period for sensing, all the sensor nodes in the same subregion will start new round by executing the DiLCO protocol and the lifetime in the subregion will continue until all the sensor nodes are died or the network becomes disconnected in the subregion. +\fi + + +\section{Coverage problem formulation} +\label{cp} + +\indent Our model is based on the model proposed by +\cite{pedraza2006} where the objective is to find a maximum number of +disjoint cover sets. To accomplish this goal, authors proposed an +integer program, which forces undercoverage and overcoverage of targets +to become minimal at the same time. They use binary variables +$x_{jl}$ to indicate if sensor $j$ belongs to cover set $l$. In our +model, we consider binary variables $X_{j}$, which determine the +activation of sensor $j$ in the sensing phase of the round. We also +consider primary points as targets. The set of primary points is +denoted by $P$ and the set of sensors by $J$. + +\noindent For a primary point $p$, let $\alpha_{jp}$ denote the +indicator function of whether the point $p$ is covered, that is: +\begin{equation} +\alpha_{jp} = \left \{ +\begin{array}{l l} + 1 & \mbox{if the primary point $p$ is covered} \\ + & \mbox{by sensor node $j$}, \\ + 0 & \mbox{otherwise.}\\ +\end{array} \right. +%\label{eq12} +\end{equation} +The number of active sensors that cover the primary point $p$ is equal +to $\sum_{j \in J} \alpha_{jp} * X_{j}$ where: +\begin{equation} +X_{j} = \left \{ +\begin{array}{l l} + 1& \mbox{if sensor $j$ is active,} \\ + 0 & \mbox{otherwise.}\\ +\end{array} \right. +%\label{eq11} +\end{equation} +We define the Overcoverage variable $\Theta_{p}$ as: +\begin{equation} + \Theta_{p} = \left \{ +\begin{array}{l l} + 0 & \mbox{if the primary point}\\ + & \mbox{$p$ is not covered,}\\ + \left( \sum_{j \in J} \alpha_{jp} * X_{j} \right)- 1 & \mbox{otherwise.}\\ +\end{array} \right. +\label{eq13} +\end{equation} +\noindent More precisely, $\Theta_{p}$ represents the number of active +sensor nodes minus one that cover the primary point $p$.\\ +The Undercoverage variable $U_{p}$ of the primary point $p$ is defined +by: +\begin{equation} +U_{p} = \left \{ +\begin{array}{l l} + 1 &\mbox{if the primary point $p$ is not covered,} \\ + 0 & \mbox{otherwise.}\\ +\end{array} \right. +\label{eq14} +\end{equation} + +\noindent Our coverage optimization problem can then be formulated as follows +\begin{equation} \label{eq:ip2r} +\left \{ +\begin{array}{ll} +\min \sum_{p \in P} (w_{\theta} \Theta_{p} + w_{U} U_{p})&\\ +\textrm{subject to :}&\\ +\sum_{j \in J} \alpha_{jp} X_{j} - \Theta_{p}+ U_{p} =1, &\forall p \in P\\ +%\label{c1} +%\sum_{t \in T} X_{j,t} \leq \frac{RE_j}{e_t} &\forall j \in J \\ +%\label{c2} +\Theta_{p}\in \mathbb{N} , &\forall p \in P\\ +U_{p} \in \{0,1\}, &\forall p \in P \\ +X_{j} \in \{0,1\}, &\forall j \in J +\end{array} +\right. +\end{equation} + + + +\begin{itemize} +\item $X_{j}$ : indicates whether or not the sensor $j$ is actively + sensing in the round (1 if yes and 0 if not); +\item $\Theta_{p}$ : {\it overcoverage}, the number of sensors minus + one that are covering the primary point $p$; +\item $U_{p}$ : {\it undercoverage}, indicates whether or not the primary point + $p$ is being covered (1 if not covered and 0 if covered). +\end{itemize} + +The first group of constraints indicates that some primary point $p$ +should be covered by at least one sensor and, if it is not always the +case, overcoverage and undercoverage variables help balancing the +restriction equations by taking positive values. There are two main +objectives. First, we limit the overcoverage of primary points in order to +activate a minimum number of sensors. Second we prevent the absence of monitoring on + some parts of the subregion by minimizing the undercoverage. The +weights $w_\theta$ and $w_U$ must be properly chosen so as to +guarantee that the maximum number of points are covered during each +round. + + + + +\section{\uppercase{Simulation Results and Analysis}} +\label{sec:Simulation Results and Analysis} +\noindent \subsection{Simulation Framework} +In this subsection, we conducted a series of simulations to evaluate the +efficiency and the relevance of our DiLCO protocol, using the discrete event +simulator OMNeT++ \cite{varga}. The simulation parameters are summarized in +Table~\ref{table3} + +\begin{table}[ht] +\caption{Relevant parameters for network initializing.} +% title of Table +\centering +% used for centering table +\begin{tabular}{c|c} +% centered columns (4 columns) + \hline +%inserts double horizontal lines +Parameter & Value \\ [0.5ex] + +%Case & Strategy (with Two Leaders) & Strategy (with One Leader) & Simple Heuristic \\ [0.5ex] +% inserts table +%heading +\hline +% inserts single horizontal line +Sensing Field & $(50 \times 25)~m^2 $ \\ +% inserting body of the table +%\hline +Nodes Number & 50, 100, 150, 200 and 250~nodes \\ +%\hline +Initial Energy & 500-700~joules \\ +%\hline +Sensing Period & 60 Minutes \\ +$E_{thr}$ & 36 Joules\\ +$R_s$ & 5~m \\ +%\hline +$w_{\Theta}$ & 1 \\ +% [1ex] adds vertical space +%\hline +$w_{U}$ & $|P^2|$ +%inserts single line +\end{tabular} +\label{table3} +% is used to refer this table in the text +\end{table} + +25 simulation runs are performed with different network topologies. The results presented hereafter are the average of these 25 runs. +We performed simulations for five different densities varying from 50 to 250~nodes. Experimental results are obtained from randomly generated networks in which nodes are deployed over a $(50 \times 25)~m^2 $ sensing field. More precisely, the deployment is controlled at a coarse scale in order to ensure that the deployed nodes can cover the sensing field with a high coverage ratio.\\ + +Our DiLCO protocol is declined into five versions: DiLCO-2, DiLCO-4, DiLCO-8, DiLCO-16, and DiLCO-32, corresponding to $2$, $4$, $8$, $16$ or $32$ subregions (leaders). + +We use an energy consumption model proposed by~\cite{ChinhVu} and based on ~\cite{raghunathan2002energy} with slight modifications. +The energy consumption for sending/receiving the packets is added whereas the part related to the sensing range is removed because we consider a fixed sensing range. +% We are took into account the energy consumption needed for the high computation during executing the algorithm on the sensor node. +%The new energy consumption model will take into account the energy consumption for communication (packet transmission/reception), the radio of the sensor node, data sensing, computational energy of Micro-Controller Unit (MCU) and high computation energy of MCU. +%revoir la phrase + +For our energy consumption model, we refer to the sensor node (Medusa II) which uses Atmels AVR ATmega103L microcontroller~\cite{raghunathan2002energy}. The typical architecture of a sensor is composed of four subsystems : the MCU subsystem which is capable of computation, communication subsystem (radio) which is responsible for +transmitting/receiving messages, sensing subsystem that collects data, and the power supply which powers the complete sensor node ~\cite{raghunathan2002energy}. Each of the first three subsystems can be turned on or off depending on the current status of the sensor. Energy consumption (expressed in milliWatt per second) for the different status of the sensor is summarized in Table~\ref{table4}. The energy needed to send or receive a 1-bit is equal to $0.2575 mW$. + +\begin{table}[ht] +\caption{The Energy Consumption Model} +% title of Table +\centering +% used for centering table +\begin{tabular}{|c|c|c|c|c|} +% centered columns (4 columns) + \hline +%inserts double horizontal lines +Sensor mode & MCU & Radio & Sensing & Power (mWs) \\ [0.5ex] +\hline +% inserts single horizontal line +Listening & ON & ON & ON & 20.05 \\ +% inserting body of the table +\hline +Active & ON & OFF & ON & 9.72 \\ +\hline +Sleep & OFF & OFF & OFF & 0.02 \\ +\hline +Computation & ON & ON & ON & 26.83 \\ +%\hline +%\multicolumn{4}{|c|}{Energy needed to send/receive a 1-bit} & 0.2575\\ + \hline +\end{tabular} + +\label{table4} +% is used to refer this table in the text +\end{table} + +For sake of simplicity we ignore the energy needed to turn on the +radio, to start up the sensor node, the transition from mode to another, etc. +%We also do not consider the need of collecting sensing data. PAS COMPRIS +Thus, when a sensor becomes active (i.e., it already decides it's status), it can turn its radio off to save battery. DiLCO protocol uses two types of packets for communication. The size of the INFO-Packet and Status-Packet are 112 bits and 24 bits respectively. +The value of energy spent to send a 1-bit-content message is obtained by using the equation in ~\cite{raghunathan2002energy} to calculate the energy cost for transmitting messages and we propose the same value for receiving the packets. + +The initial energy of each node is randomly set in the interval $[500-700]$. Each sensor node will not participate in the next round if its remaining energy is less than $E_{th}=36 Joules$, the minimum energy needed for the node to stay alive during one round. This value has been computed by multiplying the energy consumed in active state (9.72 mWs) by the time in second for one round (3600 seconds). According to the interval of initial energy, a sensor may be alive during at most 20 rounds.\\ + + +In the simulations, we introduce the following performance metrics to evaluate the efficiency of our approach: + +%\begin{enumerate}[i)] +\begin{itemize} + +\item {{\bf Coverage Ratio (CR)}:} the coverage ratio measures how much the area of a sensor field is covered. In our case, we treated the sensing fields as a grid, and used each grid point as a sample point +for calculating the coverage. The coverage ratio can be calculated by: +\begin{equation*} +\scriptsize +\mbox{CR}(\%) = \frac{\mbox{$n^t$}}{\mbox{$N$}} \times 100. +\end{equation*} +Where: $n^t$ is the number of covered grid points by the active sensors of all subregions during round $t$ in the current sensing phase and $N$ is total number of grid points in the sensing field of the network. In our simulation $N = 51 \times 26 = 1326$ grid points. +%The accuracy of this method depends on the distance between grids. In our +%simulations, the sensing field has been divided into 50 by 25 grid points, which means +%there are $51 \times 26~ = ~ 1326$ points in total. +% Therefore, for our simulations, the error in the coverage calculation is less than ~ 1 $\% $. + +\iffalse + +\item{{\bf Number of Active Sensors Ratio(ASR)}:} It is important to have as few active nodes as possible in each round, +in order to minimize the communication overhead and maximize the +network lifetime. The Active Sensors Ratio is defined as follows: +\begin{equation*} +\scriptsize +\mbox{ASR}(\%) = \frac{\sum\limits_{r=1}^R \mbox{$A_r^t$}}{\mbox{$S$}} \times 100 . +\end{equation*} +Where: $A_r^t$ is the number of active sensors in the subregion $r$ during round $t$ in the current sensing phase, $S$ is the total number of sensors in the network, and $R$ is the total number of the subregions in the network. + +\fi + +\item {{\bf Network Lifetime}:} we define the network lifetime as the time until the coverage ratio drops below a predefined threshold. We denoted by $Lifetime95$ (respectively $Lifetime50$) as the amount of time during which the network can satisfy an area coverage greater than $95\%$ (repectively $50\%$). We assume that the network +is alive until all nodes have been drained of their energy or the +sensor network becomes disconnected . Network connectivity is important because an +active sensor node without connectivity towards a base station cannot +transmit information on an event in the area that it monitors. + + +\item {{\bf Energy Consumption}:} + + Energy Consumption (EC) can be seen as the total energy consumed by the sensors during the $Lifetime95$ or $Lifetime50$ divided by the number of rounds. The EC can be computed as follow: \\ + \begin{equation*} +\scriptsize +\mbox{EC} = \frac{\sum\limits_{m=1}^{M_L} \left( E^{\mbox{com}}_m+E^{\mbox{list}}_m+E^{\mbox{comp}}_m \right) + + \sum\limits_{t=1}^{T_L} \left( E^{a}_t+E^{s}_t \right)}{T_L}, +\end{equation*} + +%\begin{equation*} +%\scriptsize +%\mbox{EC} = \frac{\mbox{$\sum\limits_{d=1}^D E^c_d$}}{\mbox{$D$}} + \frac{\mbox{$\sum\limits_{d=1}^D %E^l_d$}}{\mbox{$D$}} + \frac{\mbox{$\sum\limits_{d=1}^D E^a_d$}}{\mbox{$D$}} + %\frac{\mbox{$\sum\limits_{d=1}^D E^s_d$}}{\mbox{$D$}}. +%\end{equation*} + +where $M_L$ and $T_L$ are respectively the number of periods and rounds during +$Lifetime_{95}$ or $Lifetime_{50}$. The total energy consumed by the sensors +(EC) comes through taking into consideration four main energy factors. The first +one , denoted $E^{\scriptsize \mbox{com}}_m$, represent the energy consumption +spent by all the nodes for wireless communications during period $m$. +$E^{\scriptsize \mbox{list}}_m$, the next factor, corresponds to the energy +consumed by the sensors in LISTENING status before receiving the decision to go +active or sleep in period $m$. $E^{\scriptsize \mbox{comp}}_m$ refers to the +energy needed by all the leader nodes to solve the integer program during a +period. Finally, $E^a_t$ and $E^s_t$ indicate the energy consummed by the whole +network in round $t$. + +\iffalse +\item {{\bf Execution Time}:} a sensor node has limited energy resources and computing power, +therefore it is important that the proposed algorithm has the shortest +possible execution time. The energy of a sensor node must be mainly +used for the sensing phase, not for the pre-sensing ones. + +\item {{\bf Stopped simulation runs}:} A simulation +ends when the sensor network becomes +disconnected (some nodes are dead and are not able to send information to the base station). We report the number of simulations that are stopped due to network disconnections and for which round it occurs. + +\fi + +\end{itemize} +%\end{enumerate} + + +%\subsection{Performance Analysis for differnet subregions} +\subsection{Performance Analysis} +\label{sub1} +In this subsection, we are studied the performance of our DiLCO protocol for a different number of subregions (Leaders). +The DiLCO-1 protocol is a centralized approach on all the area of the interest, while DiLCO-2, DiLCO-4, DiLCO-8, DiLCO-16 and DiLCO-32 are distributed on two, four, eight, sixteen, and thirty-two subregions respectively. We did not take the DiLCO-1 protocol in our simulation results because it need high execution time to give the decision leading to consume all it's energy before producing the solution for optimization problem. our DiLCO protocol compared with other two approches. The first approach, called DESK that proposed by ~\cite{ChinhVu}, which is a full distributed coverage algorithm. The second approach, called GAF ~\cite{xu2001geography}, consists in dividing the region into fixed squares. During the decision phase, in each square, one sensor is chosen to remain on during the sensing phase time. + + +\subsubsection{Coverage Ratio} +In this experiment, Figure~\ref{fig3} shows the average coverage ratio for 150 deployed nodes. +\parskip 0pt +\begin{figure}[h!] +\centering + \includegraphics[scale=0.45] {R/CR.pdf} +\caption{The Coverage Ratio} +\label{fig3} +\end{figure} + +It is shown that DESK and GAF provides a +a little better coverage ratio with 99.99\% and 99.91\% against 98.9\%, 99.1\%, 99.2\%, 99.1\% and 99.4\% produced by DiLCO-2, DiLCO-4, DiLCO-8, DiLCO-16 and DiLCO-32 for the lowest number of rounds. This is due to the fact that our DiLCO protocol versions put in sleep mode redundant sensors using optimization (which lightly decreases the coverage ratio) while there are more nodes are active in the case of DESK and GAF. + +As shown in the figure ~\ref{fig3}, as the number of subregions increases, the coverage preservation for area of interest increases for a larger number of rounds. Coverage ratio decreases when the number of rounds increases due to dead nodes. Although some nodes are dead, +thanks to DiLCO-8, DiLCO-16 and DiLCO-32 protocols, other nodes are preserved to ensure the coverage. Moreover, when we have a dense sensor network, it leads to maintain the coverage for a larger number of rounds. DiLCO-8, DiLCO-16 and DiLCO-32 protocols are +slightly more efficient than other protocols, because they subdivides +the area of interest into 8, 16 and 32~subregions if one of the subregions becomes disconnected, the coverage may be still ensured in the remaining subregions. + + + +\subsubsection{The Energy Consumption} +Based on the result in figure~\ref{fig3}, we are chose DiLCO-16 and DiLCO-32 protocols to be compared with other approaches. We measure the energy consumed by the sensors during the communication, listening, computation, active, and sleep modes for different network densities and compare it for different approaches. Figure~\ref{fig95} illustrates the energy consumption for different network sizes. +% for $Lifetime95$ and $Lifetime50$. +We denoted by $DiLCO-16/50$ (respectively $DiLCO-16/95$) as the amount of energy consumed during which the network can satisfy an area coverage greater than $50\%$ (repectively $95\%$) and we refer the same definition for the other approches. +\begin{figure}[h!] +\centering +\includegraphics[scale=0.45]{R/EC.pdf} +\caption{The Energy Consumption} +\label{fig95} +\end{figure} + +The results show that our DiLCO-16/50, DiLCO-32/50, DiLCO-16/95 and DiLCO-32/95 protocols are the most competitive from the energy consumption point of view. The other approaches have a high energy consumption due to activating a larger number of redundant nodes as well as the energy consumed during the different modes of sensor nodes. In fact, a distributed method on the subregions greatly reduces the number of communications and the time of listening so thanks to the partitioning of the initial network into several independent subnetworks. +%As shown in Figures~\ref{fig95} and ~\ref{fig50} , DiLCO-2 consumes more energy than the other versions of DiLCO, especially for large sizes of network. This is easy to understand since the bigger the number of sensors involved in the integer program, the larger the time computation to solve the optimization problem as well as the higher energy consumed during the communication. + + +\subsubsection{Execution Time} +In this experiment, we study the the impact of the size of the network on the excution time of the our distributed optimization approach. Figure~\ref{fig8} gives the average execution times in seconds for the decision phase (solving of the optimization problem) during one round. They are given for the different approaches and various numbers of sensors. +The original execution time is computed on a laptop DELL with intel Core i3 2370 M (2.4 GHz) processor (2 cores) and the MIPS (Million Instructions Per Second) rate equal to 35330. To be consistent with the use of a sensor node with Atmels AVR ATmega103L microcontroller (6 MHz) and a MIPS rate equal to 6 to run the optimization resolution, this time is multiplied by 2944.2 $\left( \frac{35330}{2} \times 6\right)$ and reported on Figure~\ref{fig8} for different network sizes. + +\begin{figure}[h!] +\centering +\includegraphics[scale=0.45]{R/T.pdf} +\caption{Execution Time (in seconds)} +\label{fig8} +\end{figure} + + +We can see from figure~\ref{fig8}, that the DiLCO-32 has very low execution times in comparison with other DiLCO versions, because it distributed on larger number of small subregions. Conversely, the DiLCO-2 which requires to solve an optimization problem considering half the nodes in each subregion presents high execution times. + +The DiLCO-32 has more suitable times in the same time it turn on redundent nodes more. We think that in distributed fashion the solving of the optimization problem in a subregion can be tackled by sensor nodes. Overall, to be able to deal with very large networks, a distributed method is clearly required. + + +\subsubsection{The Network Lifetime} +In figure~\ref{figLT95}, network lifetime is illustrated for different network sizes. We denoted by $DiLCO-16/50$ (respectively $DiLCO-16/95$) as the amount of time during which the network can satisfy an area coverage greater than $50\%$ ($Lifetime50$)(repectively $95\%$ ($Lifetime95$)) and we refer the same definition for the other approches. + +\begin{figure}[h!] +\centering +\includegraphics[scale=0.45]{R/LT.pdf} +\caption{The Network Lifetime} +\label{figLT95} +\end{figure} + + +As highlighted by figures~\ref{figLT95}, the network lifetime obviously +increases when the size of the network increases, with our DiLCO-16/50, DiLCO-32/50, DiLCO-16/95 and DiLCO-32/95 protocols +that leads to the larger lifetime improvement in comparison with other approaches. By choosing the best +suited nodes, for each round, to cover the area of interest and by +letting the other ones sleep in order to be used later in next rounds. Comparison shows that our DiLCO-16/50, DiLCO-32/50, DiLCO-16/95 and DiLCO-32/95 protocols, which are used distributed optimization over the subregions, are the best one because it is robust to network disconnection during the network lifetime as well as it consume less energy in comparison with other approaches. It also means that distributing the protocol in each node and subdividing the sensing field into many subregions, which are managed +independently and simultaneously, is the most relevant way to maximize the lifetime of a network. + + + + +\section{\uppercase{Conclusion and Future Works}} +\label{sec:Conclusion and Future Works} + +\noindent In this paper, we have addressed the problem of the coverage and the lifetime +optimization in wireless sensor networks. This is a key issue as +sensor nodes have limited resources in terms of memory, energy and +computational power. To cope with this problem, the field of sensing +is divided into smaller subregions using the concept of divide-and-conquer method, and then a DiLCO protocol for optimizing the coverage and lifetime performances in each subregion. +The proposed protocol combines two efficient techniques: network +leader election and sensor activity scheduling, where the challenges +include how to select the most efficient leader in each subregion and +the best representative active nodes that will optimize the network lifetime +while taking the responsibility of covering the corresponding +subregion. The network lifetime in each subregion is divided into +rounds, each round consists of four phases: (i) Information Exchange, +(ii) Leader Election, (iii) an optimization-based Decision in order to +select the nodes remaining active for the last phase, and (iv) +Sensing. The simulations show the relevance of the proposed DiLCO +protocol in terms of lifetime, coverage ratio, active sensors ratio, energy consumption, execution time, and the number of stopped simulation runs due to network disconnection. Indeed, when +dealing with large and dense wireless sensor networks, a distributed +approach like the one we are proposed allows to reduce the difficulty of a +single global optimization problem by partitioning it in many smaller +problems, one per subregion, that can be solved more easily. + +In future work, we plan to study and propose a coverage optimization protocol, which +computes all active sensor schedules in one time, using +optimization methods. \iffalse The round will still consist of 4 phases, but the + decision phase will compute the schedules for several sensing phases + which, aggregated together, define a kind of meta-sensing phase. +The computation of all cover sets in one time is far more +difficult, but will reduce the communication overhead. \fi + +\section*{\uppercase{Acknowledgements}} +\noindent As a Ph.D. student, Ali Kadhum IDREES would like to gratefully acknowledge the University of Babylon - IRAQ for the financial support and Campus France for the received support. + + + + + +%\vfill +\bibliographystyle{apalike} +{\small +\bibliography{Example}} + + +%\vfill +\end{document} + diff --git a/FirstModel.pdf b/FirstModel.pdf new file mode 100644 index 0000000..06b4b68 Binary files /dev/null and b/FirstModel.pdf differ diff --git a/R/CR.pdf b/R/CR.pdf new file mode 100644 index 0000000..bafe909 Binary files /dev/null and b/R/CR.pdf differ diff --git a/R/EC.pdf b/R/EC.pdf new file mode 100644 index 0000000..96e35ed Binary files /dev/null and b/R/EC.pdf differ diff --git a/R/LT.pdf b/R/LT.pdf new file mode 100644 index 0000000..d3df559 Binary files /dev/null and b/R/LT.pdf differ diff --git a/R/T.pdf b/R/T.pdf new file mode 100644 index 0000000..81a93e8 Binary files /dev/null and b/R/T.pdf differ diff --git a/R/txt~ b/R/txt~ new file mode 100644 index 0000000..2520c66 --- /dev/null +++ b/R/txt~ @@ -0,0 +1,209 @@ + +\iffalse + +\section{\uppercase{Introduction}} +\label{sec:introduction} + +\noindent In the last years, there has been an increasing development in wireless +networking, Micro-Electro-Mechanical Systems (MEMS), and embedded computing +technologies, which have led to construct low-cost, small-sized, and low-power +sensor nodes that can perform detection, computation, and data communication of +surrounding environment. A WSN includes a large number of small, limited-power +sensors that can sense, process, and transmit data over a wireless +communication. They communicate with each other by using multi-hop wireless +communications and cooperate together to monitor the area of interest, so that +each measured data can be reported to a monitoring center called sink for +further analysis~\cite{Sudip03}. + +There are several fields of application covering a wide spectrum for a WSN, +including health, home, environmental, military, and industrial +applications~\cite{Akyildiz02}. One of the major scientific research challenges +in WSNs, which has been addressed by a large amount of literature during the +last few years, is the design of energy efficient approaches for coverage and +connectivity~\cite{conti2014mobile}. On the one hand an optimal +coverage~\cite{Nayak04} is required to monitor efficiently and continuously the +area of interest and on the other hand the energy consumption must be as low as +possible, due to the limited energy of sensors~\cite{Sudip03} and the +impossibility or difficulty to replace and/or recharge their batteries because +of the area of interest nature (such as remote, hostile, or unpractical +environments) and the cost. So, it is of great relevance for a WSN to be +deployed with high density, because spatial redundancy can then be exploited to +increase the lifetime of the network. However, turning on all the sensor nodes +which monitor the same region at the same time reduces the the lifetime of the +network. Therefore, to extend the lifetime of the network, the main idea is to +take advantage of the overlapping sensing regions of some sensor nodes to save +energy by turning off some of them during the sensing phase~\cite{Misra}. + +In this paper we concentrate on the area coverage problem with the objective of +maximizing the network lifetime by using an adaptive scheduling. The area of +interest is divided into subregions and an activity scheduling for sensor nodes +is planned for each subregion. In fact, the nodes in a subregion can be seen as +a cluster where each node sends sensing data to the cluster head or the sink +node. Furthermore, the activities in a subregion/cluster can continue even if +another cluster stops due to too many node failures. Our scheduling scheme +considers rounds, where a round starts with a discovery phase to exchange +information between sensors of the subregion, in order to choose in a suitable +manner a sensor node to carry out a coverage strategy. This coverage strategy +involves the solving of an integer program, which provides the activation of the +sensors for the sensing phase of the current round. + +The remainder of the paper is organized as follows. The next section +% Section~\ref{rw} +reviews the related work in the field. Section~\ref{pd} is devoted to the +DiLCO protocol Description. Section~\ref{cp} gives the coverage model +formulation which is used to schedule the activation of sensors. +Section~\ref{exp} shows the simulation results obtained using the discrete event +simulator OMNeT++ \cite{varga}. They fully demonstrate the usefulness of the +proposed approach. Finally, we give concluding remarks and some suggestions for +future works in Section~\ref{sec:conclusion}. + +\fi + + + + + + + + + + + + + + + + + + + + +\iffalse + +\subsubsection{Active Sensors Ratio} + Figure~\ref{fig4} shows the average active nodes ratio for 150 deployed nodes. +\begin{figure}[h!] +\centering +\includegraphics[scale=0.45]{R1/ASR.pdf} +\caption{The impact of the number of rounds on the active sensors ratio for 150 deployed nodes } +\label{fig4} +\end{figure} +The results presented in figure~\ref{fig4} show the increase in the number of subregions led to increase in the number of active nodes. The DiLCO-16 and DiLCO-32 protocols have a larger number of active nodes but it preserve the coverage for a larger number of rounds. The advantage of the DiLCO-16, and DiLCO-32 protocols are that even if a network is disconnected in one subregion, the other ones usually continues the optimization process, and this extends the lifetime of the network. + +\subsubsection{The percentage of stopped simulation runs} +Figure~\ref{fig6} illustrates the percentage of stopped simulation runs per round for 150 deployed nodes. +\begin{figure}[h!] +\centering +\includegraphics[scale=0.45]{R1/SR.pdf} +\caption{The percentage of stopped simulation runs compared to the number of rounds for 150 deployed nodes } +\label{fig6} +\end{figure} + +It can be observed that the DiLCO-2 is the approach which stops first because it applied the optimization on only two subregions for the area of interest that is why it is first exhibits network disconnections. +Thus, as explained previously, in case of the DiLCO-16 and DiLCO-32 with several subregions the optimization effectively continues as long as a network in a subregion is still connected. This longer partial coverage optimization participates in extending the network lifetime. + +\fi + + + + + + + +\iffalse + + + +\subsection{Performance Comparison for Different Approaches} +After extensive study for our primary point model, we found that DiLCO protocol gives better results if the sensor coverage model represented by 9 primary points. Based on the results, which are conducted from previous subsection~\ref{sub1}, we found that Our DiLCO-16, and DiLCO-32 protocols are the best candidates to be compared with other two approches. The first approach, called DESK that proposed by ~\cite{ChinhVu}, which is a full distributed coverage algorithm. The second approach, called GAF ~\cite{xu2001geography}, consists in dividing the region into fixed squares. During the decision phase, in each square, one sensor is chosen to remain on during the sensing phase time. + +\subsubsection{Coverage Ratio} +In this experiment, Figure~\ref{fig333} shows the average coverage ratio for 150 deployed nodes. + +\parskip 0pt +\begin{figure}[h!] +\centering + \includegraphics[scale=0.45] {R3/CR.pdf} +\caption{The coverage ratio for 150 deployed nodes} +\label{fig333} +\end{figure} + +It is shown that DESK and GAF provides a +a little better coverage ratio with 99.99\% and 99.91\% against 99.1\% and 99.2\% produced by DiLCO-16 and DiLCO-32 for the lowest number of rounds. This is due to the fact that our DiLCO protocol versions put in sleep mode redundant sensors using optimization (which lightly decreases the coverage ratio) while there are more nodes are active in the case of DESK and GAF. + +Moreover, when the number of rounds increases, coverage ratio produced by DESK and GAF protocols decreases. This is due to dead nodes. However, Our DiLCO-16 and DiLCO-32 protocols maintains almost a good coverage. This is because it optimize the coverage and the lifetime in wireless sensor network by selecting the best representative sensor nodes to take the reponsibilty of coverage during the sensing phase and this will leads to continue for a larger number of rounds and prolonging the network lifetime; although some nodes are dead, sensor activity scheduling of our protocol chooses other nodes to ensure the coverage of the area of interest. + +\iffalse + +\subsubsection{Active Sensors Ratio} +It is important to have as few active nodes as possible in each round, +in order to minimize the energy consumption and maximize the network lifetime. Figure~\ref{fig444} shows the average active nodes ratio for 150 deployed nodes. + +\begin{figure}[h!] +\centering +\includegraphics[scale=0.45]{R3/ASR.pdf} +\caption{The active sensors ratio for 150 deployed nodes } +\label{fig444} +\end{figure} + +The results presented in figure~\ref{fig444} show the superiority of the proposed DiLCO-16 and DiLCO-32 protocols, in comparison with the other approaches. We can observe that DESK and GAF have 37.5 \% and 44.5 \% active nodes and our DiLCO-16 and DiLCO-32 protocols competes perfectly with only 17.4 \%, 24.8 \% and 26.8 \% active nodes for the first 14 rounds. Then as the number of rounds increases our DiLCO-16 and DiLCO-32 protocols have larger number of active nodes in comparison with DESK and GAF, especially from round $35^{th}$ because they give a better coverage ratio than other approaches. We see that the DESK and GAF have less number of active nodes beginning at the rounds $35^{th}$ and $32^{th}$ because there are many nodes are died due to the high energy consumption by the redundant nodes during the sensing phase. + +\subsubsection{The percentage of stopped simulation runs} +The results presented in this experiment, is to show the comparison of our DiLCO-16 and DiLCO-32 protocols with other two approaches from the point of view the stopped simulation runs per round. +Figure~\ref{fig666} illustrates the percentage of stopped simulation +runs per round for 150 deployed nodes. +\begin{figure}[h!] +\centering +\includegraphics[scale=0.45]{R3/SR.pdf} +\caption{The percentage of stopped simulation runs compared to the number of rounds for 150 deployed nodes } +\label{fig666} +\end{figure} +It can be observed that the DESK is the approach, which stops first because it consumes more energy for communication as well as it turn on a large number of redundant nodes during the sensing phase. Our DiLCO-16 and DiLCO-32 protocols have less stopped simulation runs in comparison with DESK and GAF because it distributed the optimization on several subregions in order to optimize the coverage and the lifetime of the network by activating a less number of nodes during the sensing phase leading to extend the network lifetime and coverage preservation.The optimization effectively continues as long as a network in a subregion is still connected. + +\fi + +\subsubsection{The Energy Consumption} +In this experiment, we study the effect of the energy consumed by the wireless sensor network during the communication, computation, listening, active, and sleep modes for different network densities and compare it with other approaches. Figures~\ref{fig3EC95} and ~\ref{fig3EC50} illustrate the energy consumption for different network sizes for $Lifetime95$ and $Lifetime50$. + +\begin{figure}[h!] +\centering +\includegraphics[scale=0.45]{R3/EC95.pdf} +\caption{The Energy Consumption with $95\%-Lifetime$} +\label{fig3EC95} +\end{figure} + +\begin{figure}[h!] +\centering +\includegraphics[scale=0.45]{R3/EC50.pdf} +\caption{The Energy Consumption with $Lifetime50$} +\label{fig3EC50} +\end{figure} + +The results show that our DiLCO-16 and DiLCO-32 protocols are the most competitive from the energy consumption point of view. The other approaches have a high energy consumption due to activating a larger number of redundant nodes as well as the energy consumed during the different modes of sensor nodes. In fact, a distributed method on the subregions greatly reduces the number of communications and the time of listening so thanks to the partitioning of the initial network into several independent subnetworks. + +\subsubsection{The Network Lifetime} +In this experiment, we are observed the superiority of our DiLCO-16 and DiLCO-32 protocols against other two approaches in prolonging the network lifetime. In figures~\ref{fig3LT95} and \ref{fig3LT50}, network lifetime, $Lifetime95$ and $Lifetime50$ respectively, are illustrated for different network sizes. + +\begin{figure}[h!] +\centering +\includegraphics[scale=0.45]{R3/LT95.pdf} +\caption{The Network Lifetime for $Lifetime95$} +\label{fig3LT95} +\end{figure} + + +\begin{figure}[h!] +\centering +\includegraphics[scale=0.45]{R3/LT50.pdf} +\caption{The Network Lifetime for $Lifetime50$} +\label{fig3LT50} +\end{figure} + +As highlighted by figures~\ref{fig3LT95} and \ref{fig3LT50}, the network lifetime obviously +increases when the size of the network increases, with our DiLCO-16 and DiLCO-32 protocols +that leads to maximize the lifetime of the network compared with other approaches. +By choosing the best suited nodes, for each round, by optimizing the coverage and lifetime of the network to cover the area of interest and by letting the other ones sleep in order to be used later in next rounds, our DiLCO-16 and DiLCO-32 protocols efficiently prolonges the network lifetime. +Comparison shows that our DiLCO-16 and DiLCO-32 protocols, which are used distributed optimization over the subregions, is the best one because it is robust to network disconnection during the network lifetime as well as it consume less energy in comparison with other approaches. It also means that distributing the algorithm in each node and subdividing the sensing field into many subregions, which are managed +independently and simultaneously, is the most relevant way to maximize the lifetime of a network. + +\fi diff --git a/SCITEPRESS.eps b/SCITEPRESS.eps new file mode 100644 index 0000000..45e720a Binary files /dev/null and b/SCITEPRESS.eps differ diff --git a/SCITEPRESS.sty b/SCITEPRESS.sty new file mode 100644 index 0000000..de12dec --- /dev/null +++ b/SCITEPRESS.sty @@ -0,0 +1,162 @@ +\typeout{Conference Style for SCITEPRESS for LaTeX 2e -- version of April 2013} + +\pagestyle{empty} +\setlength\paperheight{297mm} +\setlength\paperwidth{210mm} + + +\setlength\topmargin{-0.91in} \setlength\oddsidemargin{0.02362in} +\setlength\evensidemargin{0.02362in} + +\setlength\textheight{8.74in} \setlength\textwidth{6.221in} +\setlength\columnsep{0.8cm} +\newlength\titlebox %\setlength\titlebox{2in} +\setlength\headheight{0pt} \setlength\headsep{36pt} +\thispagestyle{empty} \pagestyle{empty} + +\flushbottom \twocolumn \sloppy + +\def\addcontentsline#1#2#3{} + + + +%%First Section +\def\title#1{\gdef\@title{ #1 \\[15pt]{\textmd {\textbf }}\\}} +\newcommand{\subtitle}[1]{\\ \fontsize{13}{15}\selectfont \textit{#1 } } + +\def\keywords#1{\gdef\@keywords{\small Keywords: \hspace{0.388cm} \begin{minipage}[t]{5.45in} \fontsize{9}{11}\selectfont \vspace{-0.22cm} #1 \\ \end{minipage}}} +%\gdef\@mykeywords{} +\def\abstract#1{\gdef\@abstract{\ \\ \small Abstract: \hspace{0.6cm} \begin{minipage}[t]{5.45in} \fontsize{9}{11}\selectfont \vspace{-0.22cm} #1 \end{minipage} }} + +%%%%%%% +\def\sup#1{$^{#1}$} + +\newcommand{\authorname}[1]{\fontsize{11}{13}\selectfont #1 \\ }%\addtocounter{authorcounter}{1}} +\newcommand{\affiliation}[1]{\begin{minipage}[t]{6.2in} \centering \fontsize{9}{11}\selectfont \textit{ #1} \end{minipage} \\} +\newcommand{\email}[1]{\fontsize{9}{11}\selectfont \textit{#1} \\[12pt]} + + +%%%%%%% +\def\maketitle{\par +\begingroup +% to make the footnote style local to the title +\def\thefootnote{\fnsymbol{footnote}} +\twocolumn[ + +\centering {\LARGE\bf \@title \par} +\vskip -0.07in + +\centering\@author +\vskip 0.51in + +\@keywords +\vskip 0.02in + +\@abstract + +\vspace{32pt} + +] + + +\@thanks +\endgroup + +\let\maketitle\relax \let\@maketitle\relax +\gdef\@thanks{}\gdef\@author{}\gdef\@title{}\let\thanks\relax} + + + +%%Paper Contents and References + +\def\pubnote#1{\thispagestyle{myheadings} +\pagestyle{myheadings} +\markboth{#1}{#1} +\setlength\headheight{10pt} \setlength\headsep{10pt} +} + +% sections with less space +\def\section{\@startsection{section}{1}{\z@}{24pt plus 2pt minus 1pt} +{12pt plus 2pt minus 1pt}{\Large\bf\raggedright}} +\def\subsection{\@startsection{subsection}{2}{\z@}{-2.0ex plus +-0.5ex minus -.2ex}{12pt plus 2pt minus 1pt}{\large\bf\raggedright}} +\def\subsubsection{\@startsection{subsubsection}{3}{\z@}{-2.0ex plus +-0.5ex minus -.2ex}{12pt plus 2pt minus 1pt}{\normalsize\bf\raggedright}} + + +% Footnotes +\footnotesep 6.65pt % +\skip\footins 9pt plus 4pt minus 2pt +\def\footnoterule{\kern-3pt \hrule width 5pc \kern 2.6pt } + +% Lists and paragraphs +\parindent 0.5cm +\topsep 4pt plus 1pt minus 2pt +\partopsep 1pt plus 0.5pt minus 0.5pt +\itemsep 2pt plus 1pt minus 0.5pt +\parsep 2pt plus 1pt minus 0.5pt +\leftmargin 15pt \leftmargini\leftmargin \leftmarginii 10pt +\leftmarginiii 5pt \leftmarginiv 5pt \leftmarginv 5pt \leftmarginvi +5pt \labelwidth\leftmargini\advance\labelwidth-\labelsep \labelsep +5pt +\def\@listi{\leftmargin\leftmargini} +\def\@listii{\leftmargin\leftmarginii +\labelwidth\leftmarginii\advance\labelwidth-\labelsep +\topsep 2pt plus 1pt minus 0.5pt +\parsep 1pt plus 0.5pt minus 0.5pt +\itemsep \parsep} +\def\@listiii{\leftmargin\leftmarginiii +\labelwidth\leftmarginiii\advance\labelwidth-\labelsep +\topsep 1pt plus 0.5pt minus 0.5pt +\parsep \z@ \partopsep 0.5pt plus 0pt minus 0.5pt +\itemsep \topsep} +\def\@listiv{\leftmargin\leftmarginiv +\labelwidth\leftmarginiv\advance\labelwidth-\labelsep} +\def\@listv{\leftmargin\leftmarginv +\labelwidth\leftmarginv\advance\labelwidth-\labelsep} +\def\@listvi{\leftmargin\leftmarginvi +\labelwidth\leftmarginvi\advance\labelwidth-\labelsep} +\abovedisplayskip 7pt plus2pt minus5pt% +\belowdisplayskip \abovedisplayskip +\abovedisplayshortskip 0pt plus3pt% +\belowdisplayshortskip 4pt plus3pt minus3pt% + +%%%%%% +\setlength{\abovecaptionskip}{4pt}%plus3pt minus3pt}% +\setlength{\belowcaptionskip}{-4pt}%plus3pt minus3pt} +%%%%%% +% Less leading in most fonts (due to the narrow columns) +% The choices were between 1-pt and 1.5-pt leading +\def\normalsize{\@setfontsize\normalsize\@xpt{11}} % 10 point on 11 +\def\small{\@setfontsize\small\@ixpt{10}} % 9 point on 10 +\def\smalll{\@setfontsize\smalll\@viiipt{10}} % 9 point on 9 +\def\footnotesize{\@setfontsize\footnotesize\@ixpt{10}} % 9 point on 10 +\def\scriptsize{\@setfontsize\scriptsize\@viipt{10}} % 7 point on 8 +\def\tiny{\@setfontsize\tiny\@vipt{7}} % 6 point on 7 +\def\large{\@setfontsize\large\@xipt{12}} % 11 point on 12 +\def\Large{\@setfontsize\Large\@xiipt{14}} % 12 point on 14 +\def\LARGE{\@setfontsize\LARGE\@xivpt{16}} % 14 point on 16 +\def\huge{\@setfontsize\huge\@xviipt{20}} % 17 point on 20 +\def\Huge{\@setfontsize\Huge\@xxpt{23}} % 20 point on 23 + +\setlength{\topmargin}{-1.1cm} \addtolength{\textheight}{-0.1cm} +\setlength{\headsep}{1.9cm} +\setlength{\footskip}{1.7cm} + +\renewcommand{\large}{\fontsize{12}{15}\selectfont} +\renewcommand{\Large}{\fontsize{13}{15}\selectfont} +\renewcommand{\normalsize}{\fontsize{10}{11.5}\selectfont} +\renewcommand{\refname}{REFERENCES} + +\newcommand{\F}{\mathcal{F}} +\newcommand{\I}{\mathcal{I}} +\newcommand{\D}{\mathcal{D}} +\newcommand{\T}{\mathcal{T}} +\newcommand{\R}{\mathcal{R}} +\newcommand{\rr}{\mathfrak{r}} +\newcommand{\code}[1]{\textsf{#1}} + +\renewcommand\floatpagefraction{.9} +\renewcommand\topfraction{.9} +\renewcommand\bottomfraction{.9} +\renewcommand\textfraction{.1} \ No newline at end of file diff --git a/apalike.bst b/apalike.bst new file mode 100644 index 0000000..a7d00ff --- /dev/null +++ b/apalike.bst @@ -0,0 +1,1102 @@ +%NAME: apalike.bst +% BibTeX `apalike' bibliography style (24-Jan-88 version) +% Adapted from the `alpha' style, version 0.99a; for BibTeX version 0.99a. +% Copyright (C) 1988, all rights reserved. +% Copying of this file is allowed, provided that if you make any changes at all +% you name it something other than `apalike.bst'. +% This restriction helps ensure that all copies are identical. +% Differences between this style and `alpha' are generally heralded by a `%'. +% The file btxbst.doc has the documentation for alpha.bst. +% +% This style should be used with the `apalike' LaTeX style (apalike.sty). +% \cite's come out like "(Jones, 1986)" in the text but there are no labels +% in the bibliography, and something like "(1986)" comes out immediately +% after the author. Author (and editor) names appear as last name, comma, +% initials. A `year' field is required for every entry, and so is either +% an author (or in some cases, an editor) field or a key field. +% +% Editorial note: +% Many journals require a style like `apalike', but I strongly, strongly, +% strongly recommend that you not use it if you have a choice---use something +% like `plain' instead. Mary-Claire van Leunen (A Handbook for Scholars, +% Knopf, 1979) argues convincingly that a style like `plain' encourages better +% writing than one like `apalike'. Furthermore the strongest arguments for +% using an author-date style like `apalike'---that it's "the most practical" +% (The Chicago Manual of Style, University of Chicago Press, thirteenth +% edition, 1982, pages 400--401)---fall flat on their face with the new +% computer-typesetting technology. For instance page 401 anachronistically +% states "The chief disadvantage of [a style like `plain'] is that additions +% or deletions cannot be made after the manuscript is typed without changing +% numbers in both text references and list." LaTeX sidesteps the disadvantage. +% +% History: +% 15-sep-86 (SK,OP) Original version, by Susan King and Oren Patashnik. +% 10-nov-86 (OP) Truncated the sort.key$ string to the correct length +% in bib.sort.order to eliminate error message. +% 24-jan-88 (OP) Updated for BibTeX version 0.99a, from alpha.bst 0.99a; +% apalike now sorts by author, then year, then title; +% THIS `apalike' VERSION DOES NOT WORK WITH BIBTEX 0.98i. + +ENTRY + { address + author + booktitle + chapter + edition + editor + howpublished + institution + journal + key +% month not used in apalike + note + number + organization + pages + publisher + school + series + title + type + volume + year + } + {} + { label extra.label sort.label } + +INTEGERS { output.state before.all mid.sentence after.sentence after.block } + +FUNCTION {init.state.consts} +{ #0 'before.all := + #1 'mid.sentence := + #2 'after.sentence := + #3 'after.block := +} + +STRINGS { s t } + +FUNCTION {output.nonnull} +{ 's := + output.state mid.sentence = + { ", " * write$ } + { output.state after.block = + { add.period$ write$ + newline$ + "\newblock " write$ + } + { output.state before.all = + 'write$ + { add.period$ " " * write$ } + if$ + } + if$ + mid.sentence 'output.state := + } + if$ + s +} + +FUNCTION {output} +{ duplicate$ empty$ + 'pop$ + 'output.nonnull + if$ +} + +FUNCTION {output.check} +{ 't := + duplicate$ empty$ + { pop$ "empty " t * " in " * cite$ * warning$ } + 'output.nonnull + if$ +} + +% apalike needs this function because +% the year has special punctuation; +% apalike ignores the month +FUNCTION {output.year.check} +{ year empty$ + { "empty year in " cite$ * warning$ } + { write$ + " (" year * extra.label * ")" * + mid.sentence 'output.state := + } + if$ +} + +FUNCTION {output.bibitem} +{ newline$ + "\bibitem[" write$ + label write$ + "]{" write$ + cite$ write$ + "}" write$ + newline$ + "" + before.all 'output.state := +} + +FUNCTION {fin.entry} +{ add.period$ + write$ + newline$ +} + +FUNCTION {new.block} +{ output.state before.all = + 'skip$ + { after.block 'output.state := } + if$ +} + +FUNCTION {new.sentence} +{ output.state after.block = + 'skip$ + { output.state before.all = + 'skip$ + { after.sentence 'output.state := } + if$ + } + if$ +} + +FUNCTION {not} +{ { #0 } + { #1 } + if$ +} + +FUNCTION {and} +{ 'skip$ + { pop$ #0 } + if$ +} + +FUNCTION {or} +{ { pop$ #1 } + 'skip$ + if$ +} + +FUNCTION {new.block.checkb} +{ empty$ + swap$ empty$ + and + 'skip$ + 'new.block + if$ +} + +FUNCTION {field.or.null} +{ duplicate$ empty$ + { pop$ "" } + 'skip$ + if$ +} + +FUNCTION {emphasize} +{ duplicate$ empty$ + { pop$ "" } + { "{\em " swap$ * "}" * } + if$ +} + +INTEGERS { nameptr namesleft numnames } + +FUNCTION {format.names} +{ 's := + #1 'nameptr := + s num.names$ 'numnames := + numnames 'namesleft := + { namesleft #0 > } + { s nameptr "{vv~}{ll}{, jj}{, f.}" format.name$ 't := % last name first + nameptr #1 > + { namesleft #1 > + { ", " * t * } + { numnames #2 > + { "," * } + 'skip$ + if$ + t "others" = + { " et~al." * } + { " and " * t * } + if$ + } + if$ + } + 't + if$ + nameptr #1 + 'nameptr := + namesleft #1 - 'namesleft := + } + while$ +} + +FUNCTION {format.authors} +{ author empty$ + { "" } + { author format.names } + if$ +} + +FUNCTION {format.key} % this function is just for apalike +{ empty$ + { key field.or.null } + { "" } + if$ +} + +FUNCTION {format.editors} +{ editor empty$ + { "" } + { editor format.names + editor num.names$ #1 > + { ", editors" * } + { ", editor" * } + if$ + } + if$ +} + +FUNCTION {format.title} +{ title empty$ + { "" } + { title "t" change.case$ } + if$ +} + +FUNCTION {n.dashify} +{ 't := + "" + { t empty$ not } + { t #1 #1 substring$ "-" = + { t #1 #2 substring$ "--" = not + { "--" * + t #2 global.max$ substring$ 't := + } + { { t #1 #1 substring$ "-" = } + { "-" * + t #2 global.max$ substring$ 't := + } + while$ + } + if$ + } + { t #1 #1 substring$ * + t #2 global.max$ substring$ 't := + } + if$ + } + while$ +} + +FUNCTION {format.btitle} +{ title emphasize +} + +FUNCTION {tie.or.space.connect} +{ duplicate$ text.length$ #3 < + { "~" } + { " " } + if$ + swap$ * * +} + +FUNCTION {either.or.check} +{ empty$ + 'pop$ + { "can't use both " swap$ * " fields in " * cite$ * warning$ } + if$ +} + +FUNCTION {format.bvolume} +{ volume empty$ + { "" } + { "volume" volume tie.or.space.connect + series empty$ + 'skip$ + { " of " * series emphasize * } + if$ + "volume and number" number either.or.check + } + if$ +} + +FUNCTION {format.number.series} +{ volume empty$ + { number empty$ + { series field.or.null } + { output.state mid.sentence = + { "number" } + { "Number" } + if$ + number tie.or.space.connect + series empty$ + { "there's a number but no series in " cite$ * warning$ } + { " in " * series * } + if$ + } + if$ + } + { "" } + if$ +} + +FUNCTION {format.edition} +{ edition empty$ + { "" } + { output.state mid.sentence = + { edition "l" change.case$ " edition" * } + { edition "t" change.case$ " edition" * } + if$ + } + if$ +} + +INTEGERS { multiresult } + +FUNCTION {multi.page.check} +{ 't := + #0 'multiresult := + { multiresult not + t empty$ not + and + } + { t #1 #1 substring$ + duplicate$ "-" = + swap$ duplicate$ "," = + swap$ "+" = + or or + { #1 'multiresult := } + { t #2 global.max$ substring$ 't := } + if$ + } + while$ + multiresult +} + +FUNCTION {format.pages} +{ pages empty$ + { "" } + { pages multi.page.check + { "pages" pages n.dashify tie.or.space.connect } + { "page" pages tie.or.space.connect } + if$ + } + if$ +} + +FUNCTION {format.vol.num.pages} +{ volume field.or.null + number empty$ + 'skip$ + { "(" number * ")" * * + volume empty$ + { "there's a number but no volume in " cite$ * warning$ } + 'skip$ + if$ + } + if$ + pages empty$ + 'skip$ + { duplicate$ empty$ + { pop$ format.pages } + { ":" * pages n.dashify * } + if$ + } + if$ +} + +FUNCTION {format.chapter.pages} +{ chapter empty$ + 'format.pages + { type empty$ + { "chapter" } + { type "l" change.case$ } + if$ + chapter tie.or.space.connect + pages empty$ + 'skip$ + { ", " * format.pages * } + if$ + } + if$ +} + +FUNCTION {format.in.ed.booktitle} +{ booktitle empty$ + { "" } + { editor empty$ + { "In " booktitle emphasize * } + { "In " format.editors * ", " * booktitle emphasize * } + if$ + } + if$ +} + +FUNCTION {format.thesis.type} +{ type empty$ + 'skip$ + { pop$ + type "t" change.case$ + } + if$ +} + +FUNCTION {format.tr.number} +{ type empty$ + { "Technical Report" } + 'type + if$ + number empty$ + { "t" change.case$ } + { number tie.or.space.connect } + if$ +} + +FUNCTION {format.article.crossref} +{ "In" % this is for apalike + " \cite{" * crossref * "}" * +} + +FUNCTION {format.book.crossref} +{ volume empty$ + { "empty volume in " cite$ * "'s crossref of " * crossref * warning$ + "In " + } + { "Volume" volume tie.or.space.connect + " of " * + } + if$ + "\cite{" * crossref * "}" * % this is for apalike +} + +FUNCTION {format.incoll.inproc.crossref} +{ "In" % this is for apalike + " \cite{" * crossref * "}" * +} + +FUNCTION {article} +{ output.bibitem + format.authors "author" output.check + author format.key output % special for + output.year.check % apalike + new.block + format.title "title" output.check + new.block + crossref missing$ + { journal emphasize "journal" output.check + format.vol.num.pages output + } + { format.article.crossref output.nonnull + format.pages output + } + if$ + new.block + note output + fin.entry +} + +FUNCTION {book} +{ output.bibitem + author empty$ + { format.editors "author and editor" output.check + editor format.key output + } + { format.authors output.nonnull + crossref missing$ + { "author and editor" editor either.or.check } + 'skip$ + if$ + } + if$ + output.year.check % special for apalike + new.block + format.btitle "title" output.check + crossref missing$ + { format.bvolume output + new.block + format.number.series output + new.sentence + publisher "publisher" output.check + address output + } + { new.block + format.book.crossref output.nonnull + } + if$ + format.edition output + new.block + note output + fin.entry +} + +FUNCTION {booklet} +{ output.bibitem + format.authors output + author format.key output % special for + output.year.check % apalike + new.block + format.title "title" output.check + new.block + howpublished output + address output + new.block + note output + fin.entry +} + +FUNCTION {inbook} +{ output.bibitem + author empty$ + { format.editors "author and editor" output.check + editor format.key output + } + { format.authors output.nonnull + crossref missing$ + { "author and editor" editor either.or.check } + 'skip$ + if$ + } + if$ + output.year.check % special for apalike + new.block + format.btitle "title" output.check + crossref missing$ + { format.bvolume output + format.chapter.pages "chapter and pages" output.check + new.block + format.number.series output + new.sentence + publisher "publisher" output.check + address output + } + { format.chapter.pages "chapter and pages" output.check + new.block + format.book.crossref output.nonnull + } + if$ + format.edition output + new.block + note output + fin.entry +} + +FUNCTION {incollection} +{ output.bibitem + format.authors "author" output.check + author format.key output % special for + output.year.check % apalike + new.block + format.title "title" output.check + new.block + crossref missing$ + { format.in.ed.booktitle "booktitle" output.check + format.bvolume output + format.number.series output + format.chapter.pages output + new.sentence + publisher "publisher" output.check + address output + format.edition output + } + { format.incoll.inproc.crossref output.nonnull + format.chapter.pages output + } + if$ + new.block + note output + fin.entry +} + +FUNCTION {inproceedings} +{ output.bibitem + format.authors "author" output.check + author format.key output % special for + output.year.check % apalike + new.block + format.title "title" output.check + new.block + crossref missing$ + { format.in.ed.booktitle "booktitle" output.check + format.bvolume output + format.number.series output + format.pages output + address output % for apalike + new.sentence % there's no year + organization output % here so things + publisher output % are simpler + } + { format.incoll.inproc.crossref output.nonnull + format.pages output + } + if$ + new.block + note output + fin.entry +} + +FUNCTION {conference} { inproceedings } + +FUNCTION {manual} +{ output.bibitem + format.authors output + author format.key output % special for + output.year.check % apalike + new.block + format.btitle "title" output.check + organization address new.block.checkb + organization output + address output + format.edition output + new.block + note output + fin.entry +} + +FUNCTION {mastersthesis} +{ output.bibitem + format.authors "author" output.check + author format.key output % special for + output.year.check % apalike + new.block + format.title "title" output.check + new.block + "Master's thesis" format.thesis.type output.nonnull + school "school" output.check + address output + new.block + note output + fin.entry +} + +FUNCTION {misc} +{ output.bibitem + format.authors output + author format.key output % special for + output.year.check % apalike + new.block + format.title output + new.block + howpublished output + new.block + note output + fin.entry +} + +FUNCTION {phdthesis} +{ output.bibitem + format.authors "author" output.check + author format.key output % special for + output.year.check % apalike + new.block + format.btitle "title" output.check + new.block + "PhD thesis" format.thesis.type output.nonnull + school "school" output.check + address output + new.block + note output + fin.entry +} + +FUNCTION {proceedings} +{ output.bibitem + format.editors output + editor format.key output % special for + output.year.check % apalike + new.block + format.btitle "title" output.check + format.bvolume output + format.number.series output + address output % for apalike + new.sentence % we always output + organization output % a nonempty organization + publisher output % here + new.block + note output + fin.entry +} + +FUNCTION {techreport} +{ output.bibitem + format.authors "author" output.check + author format.key output % special for + output.year.check % apalike + new.block + format.title "title" output.check + new.block + format.tr.number output.nonnull + institution "institution" output.check + address output + new.block + note output + fin.entry +} + +FUNCTION {unpublished} +{ output.bibitem + format.authors "author" output.check + author format.key output % special for + output.year.check % apalike + new.block + format.title "title" output.check + new.block + note "note" output.check + fin.entry +} + +FUNCTION {default.type} { misc } + +MACRO {jan} {"January"} + +MACRO {feb} {"February"} + +MACRO {mar} {"March"} + +MACRO {apr} {"April"} + +MACRO {may} {"May"} + +MACRO {jun} {"June"} + +MACRO {jul} {"July"} + +MACRO {aug} {"August"} + +MACRO {sep} {"September"} + +MACRO {oct} {"October"} + +MACRO {nov} {"November"} + +MACRO {dec} {"December"} + +MACRO {acmcs} {"ACM Computing Surveys"} + +MACRO {acta} {"Acta Informatica"} + +MACRO {cacm} {"Communications of the ACM"} + +MACRO {ibmjrd} {"IBM Journal of Research and Development"} + +MACRO {ibmsj} {"IBM Systems Journal"} + +MACRO {ieeese} {"IEEE Transactions on Software Engineering"} + +MACRO {ieeetc} {"IEEE Transactions on Computers"} + +MACRO {ieeetcad} + {"IEEE Transactions on Computer-Aided Design of Integrated Circuits"} + +MACRO {ipl} {"Information Processing Letters"} + +MACRO {jacm} {"Journal of the ACM"} + +MACRO {jcss} {"Journal of Computer and System Sciences"} + +MACRO {scp} {"Science of Computer Programming"} + +MACRO {sicomp} {"SIAM Journal on Computing"} + +MACRO {tocs} {"ACM Transactions on Computer Systems"} + +MACRO {tods} {"ACM Transactions on Database Systems"} + +MACRO {tog} {"ACM Transactions on Graphics"} + +MACRO {toms} {"ACM Transactions on Mathematical Software"} + +MACRO {toois} {"ACM Transactions on Office Information Systems"} + +MACRO {toplas} {"ACM Transactions on Programming Languages and Systems"} + +MACRO {tcs} {"Theoretical Computer Science"} + +READ + +FUNCTION {sortify} +{ purify$ + "l" change.case$ +} + +INTEGERS { len } + +FUNCTION {chop.word} +{ 's := + 'len := + s #1 len substring$ = + { s len #1 + global.max$ substring$ } + 's + if$ +} + +% There are three apalike cases: one person (Jones), +% two (Jones and de~Bruijn), and more (Jones et~al.). +% This function is much like format.crossref.editors. +% +FUNCTION {format.lab.names} +{ 's := + s #1 "{vv~}{ll}" format.name$ + s num.names$ duplicate$ + #2 > + { pop$ " et~al." * } + { #2 < + 'skip$ + { s #2 "{ff }{vv }{ll}{ jj}" format.name$ "others" = + { " et~al." * } + { " and " * s #2 "{vv~}{ll}" format.name$ * } + if$ + } + if$ + } + if$ +} + +FUNCTION {author.key.label} +{ author empty$ + { key empty$ + { cite$ #1 #3 substring$ } + 'key % apalike uses the whole key + if$ + } + { author format.lab.names } + if$ +} + +FUNCTION {author.editor.key.label} +{ author empty$ + { editor empty$ + { key empty$ + { cite$ #1 #3 substring$ } + 'key % apalike uses the whole key + if$ + } + { editor format.lab.names } + if$ + } + { author format.lab.names } + if$ +} + +FUNCTION {editor.key.label} +{ editor empty$ + { key empty$ + { cite$ #1 #3 substring$ } + 'key % apalike uses the whole key, no organization + if$ + } + { editor format.lab.names } + if$ +} + +FUNCTION {calc.label} +{ type$ "book" = + type$ "inbook" = + or + 'author.editor.key.label + { type$ "proceedings" = + 'editor.key.label % apalike ignores organization + 'author.key.label % for labeling and sorting + if$ + } + if$ + ", " % these three lines are + * % for apalike, which + year field.or.null purify$ #-1 #4 substring$ % uses all four digits + * + 'label := +} + +FUNCTION {sort.format.names} +{ 's := + #1 'nameptr := + "" + s num.names$ 'numnames := + numnames 'namesleft := + { namesleft #0 > } + { nameptr #1 > + { " " * } + 'skip$ + if$ % apalike uses initials + s nameptr "{vv{ } }{ll{ }}{ f{ }}{ jj{ }}" format.name$ 't := % <= here + nameptr numnames = t "others" = and + { "et al" * } + { t sortify * } + if$ + nameptr #1 + 'nameptr := + namesleft #1 - 'namesleft := + } + while$ +} + +FUNCTION {sort.format.title} +{ 't := + "A " #2 + "An " #3 + "The " #4 t chop.word + chop.word + chop.word + sortify + #1 global.max$ substring$ +} + +FUNCTION {author.sort} +{ author empty$ + { key empty$ + { "to sort, need author or key in " cite$ * warning$ + "" + } + { key sortify } + if$ + } + { author sort.format.names } + if$ +} + +FUNCTION {author.editor.sort} +{ author empty$ + { editor empty$ + { key empty$ + { "to sort, need author, editor, or key in " cite$ * warning$ + "" + } + { key sortify } + if$ + } + { editor sort.format.names } + if$ + } + { author sort.format.names } + if$ +} + +FUNCTION {editor.sort} +{ editor empty$ + { key empty$ + { "to sort, need editor or key in " cite$ * warning$ + "" + } + { key sortify } + if$ + } + { editor sort.format.names } + if$ +} + +% apalike uses two sorting passes; the first one sets the +% labels so that the `a's, `b's, etc. can be computed; +% the second pass puts the references in "correct" order. +% The presort function is for the first pass. It computes +% label, sort.label, and title, and then concatenates. +FUNCTION {presort} +{ calc.label + label sortify + " " + * + type$ "book" = + type$ "inbook" = + or + 'author.editor.sort + { type$ "proceedings" = + 'editor.sort + 'author.sort + if$ + } + if$ + #1 entry.max$ substring$ % for + 'sort.label := % apalike + sort.label % style + * + " " + * + title field.or.null + sort.format.title + * + #1 entry.max$ substring$ + 'sort.key$ := +} + +ITERATE {presort} + +SORT % by label, sort.label, title---for final label calculation + +STRINGS { last.label next.extra } % apalike labels are only for the text; + +INTEGERS { last.extra.num } % there are none in the bibliography + +FUNCTION {initialize.extra.label.stuff} % and hence there is no `longest.label' +{ #0 int.to.chr$ 'last.label := + "" 'next.extra := + #0 'last.extra.num := +} + +FUNCTION {forward.pass} +{ last.label label = + { last.extra.num #1 + 'last.extra.num := + last.extra.num int.to.chr$ 'extra.label := + } + { "a" chr.to.int$ 'last.extra.num := + "" 'extra.label := + label 'last.label := + } + if$ +} + +FUNCTION {reverse.pass} +{ next.extra "b" = + { "a" 'extra.label := } + 'skip$ + if$ + label extra.label * 'label := + extra.label 'next.extra := +} + +EXECUTE {initialize.extra.label.stuff} + +ITERATE {forward.pass} + +REVERSE {reverse.pass} + +% Now that the label is right we sort for real, +% on sort.label then year then title. This is +% for the second sorting pass. +FUNCTION {bib.sort.order} +{ sort.label + " " + * + year field.or.null sortify + * + " " + * + title field.or.null + sort.format.title + * + #1 entry.max$ substring$ + 'sort.key$ := +} + +ITERATE {bib.sort.order} + +SORT % by sort.label, year, title---giving final bibliography order + +FUNCTION {begin.bib} +{ preamble$ empty$ % no \etalchar in apalike + 'skip$ + { preamble$ write$ newline$ } + if$ + "\begin{thebibliography}{}" write$ newline$ % no labels in apalike +} + +EXECUTE {begin.bib} + +EXECUTE {init.state.consts} + +ITERATE {call.type$} + +FUNCTION {end.bib} +{ newline$ + "\end{thebibliography}" write$ newline$ +} + +EXECUTE {end.bib} diff --git a/apalike.sty b/apalike.sty new file mode 100644 index 0000000..09863b7 --- /dev/null +++ b/apalike.sty @@ -0,0 +1,31 @@ +\def\@cite#1#2{(#1\if@tempswa , #2\fi)} +\def\@biblabel#1{} + +\newlength{\bibhang} +\setlength{\bibhang}{2em} + +\@ifundefined{chapter}{\def\thebibliography#1{\section*{REFERENCES\@mkboth + {REFERENCES}{REFERENCES}}\list + {\relax}{\setlength{\labelsep}{0em} + \setlength{\itemindent}{-\bibhang} + \setlength{\leftmargin}{\bibhang}} + \itemsep 0pt\parsep 0pt + \def\newblock{\hskip .11em plus .33em minus .07em} + \sloppy\clubpenalty4000\widowpenalty4000 + \sfcode`\.=1000\relax}}% +{\def\thebibliography#1{\chapter*{Bibliography\@mkboth + {BIBLIOGRAPHY}{BIBLIOGRAPHY}}\list + {\relax}{\setlength{\labelsep}{0em} + \setlength{\itemindent}{-\bibhang} + \setlength{\leftmargin}{\bibhang}} + \itemsep 0pt\parsep 0pt + \def\newblock{\hskip .11em plus .33em minus .07em} + \sloppy\clubpenalty4000\widowpenalty4000 + \sfcode`\.=1000\relax}} + +\def\@citex[#1]#2{\if@filesw\immediate\write\@auxout{\string\citation{#2}}\fi + \def\@citea{}\@cite{\@for\@citeb:=#2\do + {\@citea\def\@citea{; }\@ifundefined + {b@\@citeb}{{\bf ?}\@warning + {Citation `\@citeb' on page \thepage \space undefined}}% +{\csname b@\@citeb\endcsname}}}{#1}} diff --git a/article.cls b/article.cls new file mode 100644 index 0000000..38bba4e --- /dev/null +++ b/article.cls @@ -0,0 +1,642 @@ +%% +%% This is file `article.cls', +%% generated with the docstrip utility. +%% +%% The original source files were: +%% +%% classes.dtx (with options: `article') +%% +%% This is a generated file. +%% +%% Copyright 1993 1994 1995 1996 1997 1998 1999 2000 +%% The LaTeX3 Project and any individual authors listed elsewhere +%% in this file. +%% +%% This file was generated from file(s) of the LaTeX base system. +%% -------------------------------------------------------------- +%% +%% It may be distributed and/or modified under the +%% conditions of the LaTeX Project Public License, either version 1.2 +%% of this license or (at your option) any later version. +%% The latest version of this license is in +%% http://www.latex-project.org/lppl.txt +%% and version 1.2 or later is part of all distributions of LaTeX +%% version 1999/12/01 or later. +%% +%% This file may only be distributed together with a copy of the LaTeX +%% base system. You may however distribute the LaTeX base system without +%% such generated files. +%% +%% The list of all files belonging to the LaTeX base distribution is +%% given in the file `manifest.txt'. See also `legal.txt' for additional +%% information. +%% +%% \CharacterTable +%% {Upper-case \A\B\C\D\E\F\G\H\I\J\K\L\M\N\O\P\Q\R\S\T\U\V\W\X\Y\Z +%% Lower-case \a\b\c\d\e\f\g\h\i\j\k\l\m\n\o\p\q\r\s\t\u\v\w\x\y\z +%% Digits \0\1\2\3\4\5\6\7\8\9 +%% Exclamation \! Double quote \" Hash (number) \# +%% Dollar \$ Percent \% Ampersand \& +%% Acute accent \' Left paren \( Right paren \) +%% Asterisk \* Plus \+ Comma \, +%% Minus \- Point \. Solidus \/ +%% Colon \: Semicolon \; Less than \< +%% Equals \= Greater than \> Question mark \? +%% Commercial at \@ Left bracket \[ Backslash \\ +%% Right bracket \] Circumflex \^ Underscore \_ +%% Grave accent \` Left brace \{ Vertical bar \| +%% Right brace \} Tilde \~} +\NeedsTeXFormat{LaTeX2e}[1995/12/01] +\ProvidesClass{article} + [2000/05/19 v1.4b + Standard LaTeX document class] +\newcommand\@ptsize{} +\newif\if@restonecol +\newif\if@titlepage +\@titlepagefalse +\if@compatibility\else +\DeclareOption{a4paper} + {\setlength\paperheight {297mm}% + \setlength\paperwidth {210mm}} +\DeclareOption{a5paper} + {\setlength\paperheight {210mm}% + \setlength\paperwidth {148mm}} +\DeclareOption{b5paper} + {\setlength\paperheight {250mm}% + \setlength\paperwidth {176mm}} +\DeclareOption{letterpaper} + {\setlength\paperheight {11in}% + \setlength\paperwidth {8.5in}} +\DeclareOption{legalpaper} + {\setlength\paperheight {14in}% + \setlength\paperwidth {8.5in}} +\DeclareOption{executivepaper} + {\setlength\paperheight {10.5in}% + \setlength\paperwidth {7.25in}} +\DeclareOption{landscape} + {\setlength\@tempdima {\paperheight}% + \setlength\paperheight {\paperwidth}% + \setlength\paperwidth {\@tempdima}} +\fi +\if@compatibility + \renewcommand\@ptsize{0} +\else +\DeclareOption{10pt}{\renewcommand\@ptsize{0}} +\fi +\DeclareOption{11pt}{\renewcommand\@ptsize{1}} +\DeclareOption{12pt}{\renewcommand\@ptsize{2}} +\if@compatibility\else +\DeclareOption{oneside}{\@twosidefalse \@mparswitchfalse} +\fi +\DeclareOption{twoside}{\@twosidetrue \@mparswitchtrue} +\DeclareOption{draft}{\setlength\overfullrule{5pt}} +\if@compatibility\else +\DeclareOption{final}{\setlength\overfullrule{0pt}} +\fi +\DeclareOption{titlepage}{\@titlepagetrue} +\if@compatibility\else +\DeclareOption{notitlepage}{\@titlepagefalse} +\fi +\if@compatibility\else +\DeclareOption{onecolumn}{\@twocolumnfalse} +\fi +\DeclareOption{twocolumn}{\@twocolumntrue} +\DeclareOption{leqno}{\input{leqno.clo}} +\DeclareOption{fleqn}{\input{fleqn.clo}} +\DeclareOption{openbib}{% + \AtEndOfPackage{% + \renewcommand\@openbib@code{% + \advance\leftmargin\bibindent + \itemindent -\bibindent + \listparindent \itemindent + \parsep \z@ + }% + \renewcommand\newblock{\par}}% +} +\ExecuteOptions{letterpaper,10pt,oneside,onecolumn,final} +\ProcessOptions +\input{size1\@ptsize.clo} +\setlength\lineskip{1\p@} +\setlength\normallineskip{1\p@} +\renewcommand\baselinestretch{} +\setlength\parskip{0\p@ \@plus \p@} +\@lowpenalty 51 +\@medpenalty 151 +\@highpenalty 301 +\setcounter{topnumber}{2} +\renewcommand\topfraction{.7} +\setcounter{bottomnumber}{1} +\renewcommand\bottomfraction{.3} +\setcounter{totalnumber}{3} +\renewcommand\textfraction{.2} +\renewcommand\floatpagefraction{.5} +\setcounter{dbltopnumber}{2} +\renewcommand\dbltopfraction{.7} +\renewcommand\dblfloatpagefraction{.5} +\if@twoside + \def\ps@headings{% + \let\@oddfoot\@empty\let\@evenfoot\@empty + \def\@evenhead{\thepage\hfil\slshape\leftmark}% + \def\@oddhead{{\slshape\rightmark}\hfil\thepage}% + \let\@mkboth\markboth + \def\sectionmark##1{% + \markboth {\MakeUppercase{% + \ifnum \c@secnumdepth >\z@ + \thesection\quad + \fi + ##1}}{}}% + \def\subsectionmark##1{% + \markright {% + \ifnum \c@secnumdepth >\@ne + \thesubsection\quad + \fi + ##1}}} +\else + \def\ps@headings{% + \let\@oddfoot\@empty + \def\@oddhead{{\slshape\rightmark}\hfil\thepage}% + \let\@mkboth\markboth + \def\sectionmark##1{% + \markright {\MakeUppercase{% + \ifnum \c@secnumdepth >\m@ne + \thesection\quad + \fi + ##1}}}} +\fi +\def\ps@myheadings{% + \let\@oddfoot\@empty\let\@evenfoot\@empty + \def\@evenhead{\thepage\hfil\slshape\leftmark}% + \def\@oddhead{{\slshape\rightmark}\hfil\thepage}% + \let\@mkboth\@gobbletwo + \let\sectionmark\@gobble + \let\subsectionmark\@gobble + } + \if@titlepage + \newcommand\maketitle{\begin{titlepage}% + \let\footnotesize\small + \let\footnoterule\relax + \let \footnote \thanks + \null\vfil + \vskip 60\p@ + \begin{center}% + {\LARGE \@title \par}% + \vskip 3em% + {\large + \lineskip .75em% + \begin{tabular}[t]{c}% + \@author + \end{tabular}\par}% + \vskip 1.5em% + {\large \@date \par}% % Set date in \large size. + \end{center}\par + \@thanks + \vfil\null + \end{titlepage}% + \setcounter{footnote}{0}% + \global\let\thanks\relax + \global\let\maketitle\relax + \global\let\@thanks\@empty + \global\let\@author\@empty + \global\let\@date\@empty + \global\let\@title\@empty + \global\let\title\relax + \global\let\author\relax + \global\let\date\relax + \global\let\and\relax +} +\else +\newcommand\maketitle{\par + \begingroup + \renewcommand\thefootnote{\@fnsymbol\c@footnote}% + \def\@makefnmark{\rlap{\@textsuperscript{\normalfont\@thefnmark}}}% + \long\def\@makefntext##1{\parindent 1em\noindent + \hb@xt@1.8em{% + \hss\@textsuperscript{\normalfont\@thefnmark}}##1}% + \if@twocolumn + \ifnum \col@number=\@ne + \@maketitle + \else + \twocolumn[\@maketitle]% + \fi + \else + \newpage + \global\@topnum\z@ % Prevents figures from going at top of page. + \@maketitle + \fi + \thispagestyle{plain}\@thanks + \endgroup + \setcounter{footnote}{0}% + \global\let\thanks\relax + \global\let\maketitle\relax + \global\let\@maketitle\relax + \global\let\@thanks\@empty + \global\let\@author\@empty + \global\let\@date\@empty + \global\let\@title\@empty + \global\let\title\relax + \global\let\author\relax + \global\let\date\relax + \global\let\and\relax +} +\def\@maketitle{% + \newpage + \null + \vskip 2em% + \begin{center}% + \let \footnote \thanks + {\LARGE \@title \par}% + \vskip 1.5em% + {\large + \lineskip .5em% + \begin{tabular}[t]{c}% + \@author + \end{tabular}\par}% + \vskip 1em% + {\large \@date}% + \end{center}% + \par + \vskip 1.5em} +\fi +\setcounter{secnumdepth}{3} +\newcounter {part} +\newcounter {section} +\newcounter {subsection}[section] +\newcounter {subsubsection}[subsection] +\newcounter {paragraph}[subsubsection] +\newcounter {subparagraph}[paragraph] +\renewcommand \thepart {\@Roman\c@part} +\renewcommand \thesection {\@arabic\c@section} +\renewcommand\thesubsection {\thesection.\@arabic\c@subsection} +\renewcommand\thesubsubsection{\thesubsection .\@arabic\c@subsubsection} +\renewcommand\theparagraph {\thesubsubsection.\@arabic\c@paragraph} +\renewcommand\thesubparagraph {\theparagraph.\@arabic\c@subparagraph} +\newcommand\part{% + \if@noskipsec \leavevmode \fi + \par + \addvspace{4ex}% + \@afterindentfalse + \secdef\@part\@spart} + +\def\@part[#1]#2{% + \ifnum \c@secnumdepth >\m@ne + \refstepcounter{part}% + \addcontentsline{toc}{part}{\thepart\hspace{1em}#1}% + \else + \addcontentsline{toc}{part}{#1}% + \fi + {\parindent \z@ \raggedright + \interlinepenalty \@M + \normalfont + \ifnum \c@secnumdepth >\m@ne + \Large\bfseries \partname~\thepart + \par\nobreak + \fi + \huge \bfseries #2% + \markboth{}{}\par}% + \nobreak + \vskip 3ex + \@afterheading} +\def\@spart#1{% + {\parindent \z@ \raggedright + \interlinepenalty \@M + \normalfont + \huge \bfseries #1\par}% + \nobreak + \vskip 3ex + \@afterheading} +\newcommand\section{\@startsection {section}{1}{\z@}% + {-3.5ex \@plus -1ex \@minus -.2ex}% + {2.3ex \@plus.2ex}% + {\normalfont\Large\bfseries}} +\newcommand\subsection{\@startsection{subsection}{2}{\z@}% + {-3.25ex\@plus -1ex \@minus -.2ex}% + {1.5ex \@plus .2ex}% + {\normalfont\large\bfseries}} +\newcommand\subsubsection{\@startsection{subsubsection}{3}{\z@}% + {-3.25ex\@plus -1ex \@minus -.2ex}% + {1.5ex \@plus .2ex}% + {\normalfont\normalsize\bfseries}} +\newcommand\paragraph{\@startsection{paragraph}{4}{\z@}% + {3.25ex \@plus1ex \@minus.2ex}% + {-1em}% + {\normalfont\normalsize\bfseries}} +\newcommand\subparagraph{\@startsection{subparagraph}{5}{\parindent}% + {3.25ex \@plus1ex \@minus .2ex}% + {-1em}% + {\normalfont\normalsize\bfseries}} +\if@twocolumn + \setlength\leftmargini {2em} +\else + \setlength\leftmargini {2.5em} +\fi +\leftmargin \leftmargini +\setlength\leftmarginii {2.2em} +\setlength\leftmarginiii {1.87em} +\setlength\leftmarginiv {1.7em} +\if@twocolumn + \setlength\leftmarginv {.5em} + \setlength\leftmarginvi {.5em} +\else + \setlength\leftmarginv {1em} + \setlength\leftmarginvi {1em} +\fi +\setlength \labelsep {.5em} +\setlength \labelwidth{\leftmargini} +\addtolength\labelwidth{-\labelsep} +\@beginparpenalty -\@lowpenalty +\@endparpenalty -\@lowpenalty +\@itempenalty -\@lowpenalty +\renewcommand\theenumi{\@arabic\c@enumi} +\renewcommand\theenumii{\@alph\c@enumii} +\renewcommand\theenumiii{\@roman\c@enumiii} +\renewcommand\theenumiv{\@Alph\c@enumiv} +\newcommand\labelenumi{\theenumi.} +\newcommand\labelenumii{(\theenumii)} +\newcommand\labelenumiii{\theenumiii.} +\newcommand\labelenumiv{\theenumiv.} +\renewcommand\p@enumii{\theenumi} +\renewcommand\p@enumiii{\theenumi(\theenumii)} +\renewcommand\p@enumiv{\p@enumiii\theenumiii} +\newcommand\labelitemi{\textbullet} +\newcommand\labelitemii{\normalfont\bfseries \textendash} +\newcommand\labelitemiii{\textasteriskcentered} +\newcommand\labelitemiv{\textperiodcentered} +\newenvironment{description} + {\list{}{\labelwidth\z@ \itemindent-\leftmargin + \let\makelabel\descriptionlabel}} + {\endlist} +\newcommand*\descriptionlabel[1]{\hspace\labelsep + \normalfont\bfseries #1} +\if@titlepage + \newenvironment{abstract}{% + \titlepage + \null\vfil + \@beginparpenalty\@lowpenalty + \begin{center}% + \bfseries \abstractname + \@endparpenalty\@M + \end{center}}% + {\par\vfil\null\endtitlepage} +\else + \newenvironment{abstract}{% + \if@twocolumn + \section*{\abstractname}% + \else + \small + \begin{center}% + {\bfseries \abstractname\vspace{-.5em}\vspace{\z@}}% + \end{center}% + \quotation + \fi} + {\if@twocolumn\else\endquotation\fi} +\fi +\newenvironment{verse} + {\let\\\@centercr + \list{}{\itemsep \z@ + \itemindent -1.5em% + \listparindent\itemindent + \rightmargin \leftmargin + \advance\leftmargin 1.5em}% + \item\relax} + {\endlist} +\newenvironment{quotation} + {\list{}{\listparindent 1.5em% + \itemindent \listparindent + \rightmargin \leftmargin + \parsep \z@ \@plus\p@}% + \item\relax} + {\endlist} +\newenvironment{quote} + {\list{}{\rightmargin\leftmargin}% + \item\relax} + {\endlist} +\if@compatibility +\newenvironment{titlepage} + {% + \if@twocolumn + \@restonecoltrue\onecolumn + \else + \@restonecolfalse\newpage + \fi + \thispagestyle{empty}% + \setcounter{page}\z@ + }% + {\if@restonecol\twocolumn \else \newpage \fi + } +\else +\newenvironment{titlepage} + {% + \if@twocolumn + \@restonecoltrue\onecolumn + \else + \@restonecolfalse\newpage + \fi + \thispagestyle{empty}% + \setcounter{page}\@ne + }% + {\if@restonecol\twocolumn \else \newpage \fi + \if@twoside\else + \setcounter{page}\@ne + \fi + } +\fi +\newcommand\appendix{\par + \setcounter{section}{0}% + \setcounter{subsection}{0}% + \gdef\thesection{\@Alph\c@section}} +\setlength\arraycolsep{5\p@} +\setlength\tabcolsep{6\p@} +\setlength\arrayrulewidth{.4\p@} +\setlength\doublerulesep{2\p@} +\setlength\tabbingsep{\labelsep} +\skip\@mpfootins = \skip\footins +\setlength\fboxsep{3\p@} +\setlength\fboxrule{.4\p@} +\renewcommand \theequation {\@arabic\c@equation} +\newcounter{figure} +\renewcommand \thefigure {\@arabic\c@figure} +\def\fps@figure{tbp} +\def\ftype@figure{1} +\def\ext@figure{lof} +\def\fnum@figure{\figurename~\thefigure} +\newenvironment{figure} + {\@float{figure}} + {\end@float} +\newenvironment{figure*} + {\@dblfloat{figure}} + {\end@dblfloat} +\newcounter{table} +\renewcommand\thetable{\@arabic\c@table} +\def\fps@table{tbp} +\def\ftype@table{2} +\def\ext@table{lot} +\def\fnum@table{\tablename~\thetable} +\newenvironment{table} + {\@float{table}} + {\end@float} +\newenvironment{table*} + {\@dblfloat{table}} + {\end@dblfloat} +\newlength\abovecaptionskip +\newlength\belowcaptionskip +\setlength\abovecaptionskip{10\p@} +\setlength\belowcaptionskip{0\p@} +\long\def\@makecaption#1#2{% + \vskip\abovecaptionskip + \sbox\@tempboxa{#1: #2}% + \ifdim \wd\@tempboxa >\hsize + #1: #2\par + \else + \global \@minipagefalse + \hb@xt@\hsize{\hfil\box\@tempboxa\hfil}% + \fi + \vskip\belowcaptionskip} +\DeclareOldFontCommand{\rm}{\normalfont\rmfamily}{\mathrm} +\DeclareOldFontCommand{\sf}{\normalfont\sffamily}{\mathsf} +\DeclareOldFontCommand{\tt}{\normalfont\ttfamily}{\mathtt} +\DeclareOldFontCommand{\bf}{\normalfont\bfseries}{\mathbf} +\DeclareOldFontCommand{\it}{\normalfont\itshape}{\mathit} +\DeclareOldFontCommand{\sl}{\normalfont\slshape}{\@nomath\sl} +\DeclareOldFontCommand{\sc}{\normalfont\scshape}{\@nomath\sc} +\DeclareRobustCommand*\cal{\@fontswitch\relax\mathcal} +\DeclareRobustCommand*\mit{\@fontswitch\relax\mathnormal} +\newcommand\@pnumwidth{1.55em} +\newcommand\@tocrmarg{2.55em} +\newcommand\@dotsep{4.5} +\setcounter{tocdepth}{3} +\newcommand\tableofcontents{% + \section*{\contentsname + \@mkboth{% + \MakeUppercase\contentsname}{\MakeUppercase\contentsname}}% + \@starttoc{toc}% + } +\newcommand*\l@part[2]{% + \ifnum \c@tocdepth >-2\relax + \addpenalty\@secpenalty + \addvspace{2.25em \@plus\p@}% + \begingroup + \parindent \z@ \rightskip \@pnumwidth + \parfillskip -\@pnumwidth + {\leavevmode + \large \bfseries #1\hfil \hb@xt@\@pnumwidth{\hss #2}}\par + \nobreak + \if@compatibility + \global\@nobreaktrue + \everypar{\global\@nobreakfalse\everypar{}}% + \fi + \endgroup + \fi} +\newcommand*\l@section[2]{% + \ifnum \c@tocdepth >\z@ + \addpenalty\@secpenalty + \addvspace{1.0em \@plus\p@}% + \setlength\@tempdima{1.5em}% + \begingroup + \parindent \z@ \rightskip \@pnumwidth + \parfillskip -\@pnumwidth + \leavevmode \bfseries + \advance\leftskip\@tempdima + \hskip -\leftskip + #1\nobreak\hfil \nobreak\hb@xt@\@pnumwidth{\hss #2}\par + \endgroup + \fi} +\newcommand*\l@subsection{\@dottedtocline{2}{1.5em}{2.3em}} +\newcommand*\l@subsubsection{\@dottedtocline{3}{3.8em}{3.2em}} +\newcommand*\l@paragraph{\@dottedtocline{4}{7.0em}{4.1em}} +\newcommand*\l@subparagraph{\@dottedtocline{5}{10em}{5em}} +\newcommand\listoffigures{% + \section*{\listfigurename + \@mkboth{\MakeUppercase\listfigurename}% + {\MakeUppercase\listfigurename}}% + \@starttoc{lof}% + } +\newcommand*\l@figure{\@dottedtocline{1}{1.5em}{2.3em}} +\newcommand\listoftables{% + \section*{\listtablename + \@mkboth{% + \MakeUppercase\listtablename}{\MakeUppercase\listtablename}}% + \@starttoc{lot}% + } +\let\l@table\l@figure +\newdimen\bibindent +\setlength\bibindent{1.5em} +\newenvironment{thebibliography}[1] + {\section*{\refname + \@mkboth{\MakeUppercase\refname}{\MakeUppercase\refname}}% + \list{\@biblabel{\@arabic\c@enumiv}}% + {\settowidth\labelwidth{\@biblabel{#1}}% + \leftmargin\labelwidth + \advance\leftmargin\labelsep + \@openbib@code + \usecounter{enumiv}% + \let\p@enumiv\@empty + \renewcommand\theenumiv{\@arabic\c@enumiv}}% + \sloppy + \clubpenalty4000 + \@clubpenalty \clubpenalty + \widowpenalty4000% + \sfcode`\.\@m} + {\def\@noitemerr + {\@latex@warning{Empty `thebibliography' environment}}% + \endlist} +\newcommand\newblock{\hskip .11em\@plus.33em\@minus.07em} +\let\@openbib@code\@empty +\newenvironment{theindex} + {\if@twocolumn + \@restonecolfalse + \else + \@restonecoltrue + \fi + \columnseprule \z@ + \columnsep 35\p@ + \twocolumn[\section*{\indexname}]% + \@mkboth{\MakeUppercase\indexname}% + {\MakeUppercase\indexname}% + \thispagestyle{plain}\parindent\z@ + \parskip\z@ \@plus .3\p@\relax + \let\item\@idxitem} + {\if@restonecol\onecolumn\else\clearpage\fi} +\newcommand\@idxitem{\par\hangindent 40\p@} +\newcommand\subitem{\@idxitem \hspace*{20\p@}} +\newcommand\subsubitem{\@idxitem \hspace*{30\p@}} +\newcommand\indexspace{\par \vskip 10\p@ \@plus5\p@ \@minus3\p@\relax} +\renewcommand\footnoterule{% + \kern-3\p@ + \hrule\@width.4\columnwidth + \kern2.6\p@} +\newcommand\@makefntext[1]{% + \parindent 1em% + \noindent + \hb@xt@1.8em{\hss\@makefnmark}#1} +\newcommand\contentsname{Contents} +\newcommand\listfigurename{List of Figures} +\newcommand\listtablename{List of Tables} +\newcommand\refname{References} +\newcommand\indexname{Index} +\newcommand\figurename{\small Figure} +\newcommand\tablename{Table} +\newcommand\partname{Part} +\newcommand\appendixname{Appendix} +\newcommand\abstractname{Abstract} +\def\today{\ifcase\month\or + January\or February\or March\or April\or May\or June\or + July\or August\or September\or October\or November\or December\fi + \space\number\day, \number\year} +\setlength\columnsep{10\p@} +\setlength\columnseprule{0\p@} +\pagestyle{plain} +\pagenumbering{arabic} +\if@twoside +\else + \raggedbottom +\fi +\if@twocolumn + \twocolumn + \sloppy + \flushbottom +\else + \onecolumn +\fi +\endinput +%% +%% End of file `article.cls'.