]> AND Private Git Repository - ThesisAhmed.git/blob - thesis-presentation/AhmedSlides.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
9bb4b6f7df7e151fa00ce96188de24fb5a7ac9bf
[ThesisAhmed.git] / thesis-presentation / AhmedSlides.tex
1  \documentclass{beamer}
2 \usepackage{beamerthemefemto}
3 \usepackage[latin1]{inputenc}
4 \usepackage[T1]{fontenc}
5 \DeclareGraphicsExtensions{.jpg, .png , .pdf, .bmp, .pdftex}
6 \usepackage{algorithm,algorithmicx,algpseudocode}
7 \usepackage{graphicx,graphics}
8 \usepackage{subfig}
9 \usepackage{listings}
10 \usepackage{colortbl}
11 \usepackage{amsmath}
12 \usepackage{xspace}
13  \usepackage{movie15}
14  \usepackage{animate}
15 \usepackage{xmpmulti} 
16  \newcommand{\AG}[2][inline]{%
17   \todo[color=green!50,#1]{\sffamily\textbf{AG:} #2}\xspace}
18 \newcommand{\JC}[2][inline]{%
19   \todo[color=red!10,#1]{\sffamily\textbf{JC:} #2}\xspace}
20 \definecolor{myblue}{RGB}{0,29,119}
21 \newcommand{\Xsub}[2]{{\ensuremath{#1_\mathit{#2}}}}
22 \usepackage{fixltx2e}
23 %% used to put some subscripts lower, and make them more legible
24 \newcommand{\fxheight}[1]{\ifx#1\relax\relax\else\rule{0pt}{1.52ex}#1\fi}
25
26 \newcommand{\CL}{\Xsub{C}{L}}
27 \newcommand{\Dist}{\mathit{Dist}}
28 \newcommand{\EdNew}{\Xsub{E}{dNew}}
29 \newcommand{\Eind}{\Xsub{E}{ind}}
30 \newcommand{\Enorm}{\Xsub{E}{Norm}}
31 \newcommand{\Eoriginal}{\Xsub{E}{Original}}
32 \newcommand{\Ereduced}{\Xsub{E}{Reduced}}
33 \newcommand{\Es}{\Xsub{E}{S}}
34 \newcommand{\Fdiff}[1][]{\Xsub{F}{diff}_{\!#1}}
35 \newcommand{\Fmax}[1][]{\Xsub{F}{max}_{\fxheight{#1}}}
36 \newcommand{\Fnew}{\Xsub{F}{new}}
37 \newcommand{\Vnew}{\Xsub{V}{new}}
38 \newcommand{\Vmax}{\Xsub{V}{max}}
39 \newcommand{\Ileak}{\Xsub{I}{leak}}
40 \newcommand{\Kdesign}{\Xsub{K}{design}}
41 \newcommand{\MaxDist}{\mathit{Max}\Dist}
42 \newcommand{\MinTcm}{\mathit{Min}\Tcm}
43 \newcommand{\Ntrans}{\Xsub{N}{trans}}
44 \newcommand{\Pd}[1][]{\Xsub{P}{d}_{\fxheight{#1}}}
45 \newcommand{\PdNew}{\Xsub{P}{dNew}}
46
47 \newcommand{\PdOld}{\Xsub{P}{dOld}}
48 \newcommand{\Pnorm}{\Xsub{P}{Norm}}
49 \newcommand{\Tnorm}{\Xsub{T}{Norm}}
50 \newcommand{\Ps}[1][]{\Xsub{P}{s}_{\fxheight{#1}}}
51 \newcommand{\Scp}[1][]{\Xsub{S}{cp}_{#1}}
52 \newcommand{\Sopt}[1][]{\Xsub{S}{opt}_{#1}}
53 \newcommand{\Tcm}[1][]{\Xsub{T}{cm}_{\fxheight{#1}}}
54 \newcommand{\Tcp}[1][]{\Xsub{T}{cp}_{#1}}
55 \newcommand{\TcpOld}[1][]{\Xsub{T}{cpOld}_{#1}}
56 \newcommand{\Tnew}{\Xsub{T}{New}}
57 \newcommand{\Told}{\Xsub{T}{Old}}
58 \newcommand{\Ltcm}[1][]{\Xsub{L}{tcm}_{\fxheight{#1}}}
59 \newcommand{\Etcm}[1][]{\Xsub{E}{tcm}_{\fxheight{#1}}}
60 \newcommand{\Niter}[1][]{\Xsub{N}{iter}_{\fxheight{#1}}}
61 \newcommand{\Pmax}[1][]{\Xsub{P}{max}_{\fxheight{#1}}}
62 \newcommand{\Pidle}[1][]{\Xsub{P}{idle}_{\fxheight{#1}}}
63  \usepackage{pifont}
64 \usepackage{xcolor}
65 \definecolor{myblue}{RGB}{0,29,119}
66 \usepackage[textsize=footnotesize]{todonotes}
67 \newcommand{\bsquare}{\item[\color{myblue}\ding{110}]} 
68 \newcommand{\barrow}{\item[\color{myblue}\ding{228}]}
69 \newcommand{\bwarrow}{\item[\color{myblue}\ding{227}]}
70 \DeclareGraphicsExtensions{.jpg, .png , .pdf, .bmp, .pdftex}
71
72
73
74 %\title{Energy Consumption Optimization of Parallel Applications with
75 %Iterations using CPU Frequency Scaling} 
76 \vspace{2cm}
77
78 \title{   \textbf{Energy Consumption Optimization of   Parallel Applications with Iterations   using CPU Frequency Scaling} \\ \vspace{0.2cm} \hspace{1.8cm}\textbf{\textcolor{cyan}{\small PhD Dissertation Defense}}}\vspace{-0.5cm}
79 \author{ \textbf{Ahmed Badri Muslim Fanfakh} \\ \vspace{0.5cm}\small Under the supervision of: \\ \textcolor{cyan}{\small  Raphaël COUTURIER and Jean-Claude CHARR} \\\vspace{0.1cm} \textcolor{blue}{ UBFC - FEMTO-ST - DISC Dept.  - AND Team} \\ ~~~~~~~~~~~~~~~~~~~~~ \textbf{\textcolor{blue}{ 17 October 2016 }}} 
80
81 \date{}
82 \vspace{-3cm}
83 %  ____  _____ ____  _   _ _____ 
84 % |  _ \| ____| __ )| | | |_   _|
85 % | | | |  _| |  _ \| | | | | |  
86 % | |_| | |___| |_) | |_| | | |  
87 % |____/|_____|____/ \___/  |_|  
88
89 \begin{document}
90 \setbeamertemplate{background}{\titrefemto}
91
92 %%%%%%%%%%%%%%%%%%%%
93 %%    SLIDE 01    %%
94 %%%%%%%%%%%%%%%%%%%% 
95 \begin{frame}[plain]
96 \vspace{1cm}
97 \centering
98    \titlepage
99 \end{frame}
100
101
102 %%%%%%%%%%%%%%%%%%%%
103 %%    SLIDE 02    %%
104 %%%%%%%%%%%%%%%%%%%% 
105 \setbeamertemplate{background}{\pagefemto}
106 \begin{frame}{Outline}
107
108 \setbeamertemplate{section in toc}[sections numbered] 
109 \tableofcontents
110 \end{frame}
111
112
113 %%%%%%%%%%%%%%%%%%%%
114 %%    SLIDE 03    %%
115 %%%%%%%%%%%%%%%%%%%% 
116 \begin{frame}{Introduction and problem definition}
117  \section{\small {Introduction and Problem definition}}
118    \bf \textcolor{blue}{To get more computing power:}
119      \begin{minipage}{0.5\textwidth} 
120       \textcolor{blue}{1)} \small  \bf \textcolor{black}{Increase the frequency of a  processor.\\ (limited due to overheating)}
121     \end{minipage}%
122     \begin{minipage}{0.6\textwidth} 
123     
124 \begin{figure}[h!]
125         
126     \includegraphics[width=0.7\textwidth]{fig/freq-years} 
127     \end{figure}
128     \end{minipage}%
129     \vspace{0.2cm}
130     \begin{minipage}{0.5\textwidth} 
131      \textcolor{blue}{2)} \small \bf \textcolor{black}{Use more nodes.}
132      
133  \textcolor{black}{The supercomputer Tianhe-2 has more than 3 million cores and consumes around 17.8 megawatts.}  
134           
135     \end{minipage}%
136     \begin{minipage}{0.6\textwidth} 
137     \begin{figure}[h!]
138      \includegraphics[width=0.7\textwidth]{fig/clusters} 
139     \end{figure}
140     \end{minipage}%
141  \end{frame}
142  
143  
144  
145
146  %%%%%%%%%%%%%%%%%%%
147 %%    SLIDE 04   %%
148 %%%%%%%%%%%%%%%%%%%% 
149 \begin{frame}{Techniques for energy consumption reduction}
150
151      \textcolor{blue}{1)} \bf \textcolor{black}{Switch-off idle nodes method}  
152     \vspace{-0.9cm}
153     \begin{figure}
154      \animategraphics[autopause,loop,controls,scale=0.25,buttonsize=0.2cm]{200}{on-off/a-}{0}{69}
155      %\includegraphics[width=0.6\textwidth]{on-off/a-69}
156     \end{figure}
157  \end{frame}
158
159 %%%%%%%%%%%%%%%%%%%%
160 %%    SLIDE 06    %%
161 %%%%%%%%%%%%%%%%%%%% 
162 \begin{frame}{Techniques for energy consumption reduction}
163  
164   \textcolor{blue}{2)} \bf \textcolor{black}{Dynamic voltage and frequency Scaling (DVFS)}
165      \vspace{-0.9cm}
166     \begin{figure}
167     \animategraphics[autopause,controls,scale=0.25,buttonsize=0.2cm]{10}{DVFS-meq/a-}{0}{109}
168      %\includegraphics[width=0.6\textwidth]{DVFS-meq/a-109}
169     \end{figure}
170     \end{frame}
171  
172
173
174 %%%%%%%%%%%%%%%%%%%%
175 %%    SLIDE 07    %%
176 %%%%%%%%%%%%%%%%%%%% 
177 \begin{frame}{Motivations}
178 \vspace{0.05cm}
179 \section{\small {Motivations}}
180 \textcolor{blue}{Why we used the DVFS method:}
181 \vspace{-0.49cm}
182 \begin{minipage}{0.5\textwidth} 
183     \vspace{-0.49cm} 
184       \begin{itemize} 
185        \item  \small \textcolor{black}{ The CPU is the component that consumes the  highest amount of energy in a node \textsuperscript{1}. }
186                 
187          \end{itemize}
188
189     \end{minipage}%
190     \begin{minipage}{0.5\textwidth}
191      \vspace{-0.49cm} 
192     \begin{figure}[h!]
193      \includegraphics[width=0.85\textwidth]{fig/node-power} 
194      
195     \end{figure}
196     \end{minipage}%
197     
198   \begin{itemize} \item \small  \textcolor{black}{DVFS reduces the energy consumption while 
199    keeping all the nodes working.}
200                 \item \small \textcolor{black}{It has a very small overhead compared to switching-off the idle nodes.}  \end{itemize} 
201     
202 \vspace{-0.12cm}
203
204  \begin{block}{\textcolor{white}{Challenge and Objective}}
205
206         \small  \textcolor{blue}{Challenge:} \textcolor{black}{DVFS is used to reduce the energy consumption, \textcolor{blue}{but} it degrades the performance simultaneously.}
207                 
208                 \vspace{0.1cm}
209  \small  \textcolor{blue}{Objective:} \textcolor{black}{Applying the DVFS to minimize the energy consumption while maintaining the performance of the parallel application.}
210 \end{block}
211  
212  \tiny \textsuperscript{1} Fan, X., Weber, W., and Barroso, L. A. 2007.  Power provisioning
213 for a warehouse-sized computer.
214
215     \end{frame}
216
217
218
219 %%%%%%%%%%%%%%%%%%%%
220 %%    SLIDE 08    %%
221 %%%%%%%%%%%%%%%%%%%% 
222
223
224 \begin{frame}{The first contribution}
225
226 \section{\small {Energy optimization of a homogeneous platform}}
227 %\vspace{-3cm}
228  % \includegraphics[width=0.6\textwidth]{white.pdf} 
229
230 \begin{center}
231 \bf  \Large \textcolor{blue}{Energy optimization of a parallel application with iterations running over a homogeneous platform}
232 \end{center}
233  \end{frame}
234
235
236
237 %%%%%%%%%%%%%%%%%%%%
238 %%    SLIDE 09    %%
239 %%%%%%%%%%%%%%%%%%%% 
240  
241 \begin{frame}{Objectives}
242         \begin{femtoBlock}{} \vspace{-12 mm}
243                 \begin{itemize} \small
244                    \item  Study the effect of the scaling factor on the \textbf{energy consumption and performance } of parallel  applications with iterations. \medskip
245                    
246                    \item  Discovering the \textbf{energy-performance trade-off relation} when changing the frequency of the processor.\medskip
247                    \item  Proposing an algorithm for selecting the scaling factor that produces  \textbf {the optimal trade-off} between the energy consumption and the performance. \medskip
248                    \item  Comparing the proposed algorithm to existing methods.
249                    
250                    
251                    %\footnote{\tiny Thomas Rauber and Gudula Rünger. Analytical modeling and simulation of the  
252                           %energy consumption \\  \quad ~ ~\quad    of  independent tasks. In Proceedings of the Winter Simulation Conference, 2012.} method that our method best on. 
253                 \end{itemize}
254                  %\let\thefootnote\relax\footnote{}
255           \vspace{-10 mm}
256         \end{femtoBlock}      
257 \end{frame}
258
259
260
261 %%%%%%%%%%%%%%%%%%%%
262 %%    SLIDE 10    %%
263 %%%%%%%%%%%%%%%%%%%% 
264
265
266 \begin{frame}{Execution of synchronous parallel tasks}
267 \vspace{-0.5 cm}
268 \begin{figure}
269   \centering
270   \subfloat[Synchronous imbalanced communications]{%
271     \includegraphics[scale=0.49]{c1/commtasks}\label{fig:h1}}
272   \subfloat[Synchronous imbalanced computations]{%
273     \includegraphics[scale=0.49]{c1/compt}\label{fig:h2}}
274  % \caption{Parallel tasks on homogeneous platform}
275   \label{fig:homo}
276 \end{figure}
277
278  \end{frame}
279  
280  
281  
282
283 %%%%%%%%%%%%%%%%%%%%
284 %%    SLIDE 11   %%
285 %%%%%%%%%%%%%%%%%%%% 
286 \begin{frame}{Energy model for a homogeneous platform}    
287       The power consumed by a processor divided into two power metrics: the dynamic (\textcolor{red}{$P_d$}) and static   
288        (\textcolor{red}{$P_s$}) power. 
289     \begin{equation}
290      \label{eq:pd}
291      \textcolor{red}{ P_d} = \textcolor{blue}{\alpha \cdot CL \cdot V^2 \cdot F}
292    \end{equation}
293     \scriptsize \underline{Where}: \\ 
294     \scriptsize {\textcolor{blue}{$\alpha$}: switching activity \hspace{15 mm}  \textcolor{blue}{$CL$}: load capacitance\\     
295     \textcolor{blue}{$V$} the supply voltage \hspace{14 mm} \textcolor{blue}{$F$}: operational frequency}
296    \begin{equation}
297      \label{eq:ps}
298      \small \textcolor{red}{P_s} = \textcolor{blue}{V \cdot N_{trans} \cdot K_{design} \cdot I_{Leak}}
299    \end{equation}
300     \underline{Where}:\\ 
301         \scriptsize{ \textcolor{blue}{$V$}: the supply voltage.  \hspace{28 mm}   \textcolor{blue}{$N_{trans}$}: number of transistors. \\   
302         \textcolor{blue}{$K_{design}$}: design dependent parameter. \hspace{8 mm} \textcolor{blue}{$I_{leak}$}: technology dependent  
303              parameter.} 
304 \end{frame}
305
306 %%%%%%%%%%%%%%%%%%%%
307 %%    SLIDE 12   %%
308 %%%%%%%%%%%%%%%%%%%% 
309
310 \begin{frame}{Energy model for a homogeneous platform}
311        
312           The frequency scaling factor is the ratio between the maximum and the new frequency, \textcolor{blue}{$S = \frac{F_{max}}{F_{new}}$}.  \medskip     
313               
314               
315               
316         \begin{block}{\small Rauber and Rünger's energy model}
317          $ E = P_{d} \cdot S_1^{-2} \cdot
318          \left( T_1 + \sum_{i=2}^{N} \frac{T_i^3}{T_1^2} \right) +
319             P_{s} \cdot S_1  \cdot T_1 \cdot N$
320         \end{block}     
321            \textcolor{blue}{$S_1$}: the maximum scaling factor.\\ 
322            \textcolor{blue}{$P_{d}$}: the dynamic power.\\
323            \textcolor{blue}{$P_{s}$}: the static power.\\
324            \textcolor{blue}{$T_I$}: the execution time of the slower task.\\ 
325            \textcolor{blue}{$T_i$}: the execution time of task i.\\ 
326            \textcolor{blue}{$N$}:  the number of  nodes.
327        
328 \end{frame}
329   
330   
331 %%%%%%%%%%%%%%%%%%%%
332 %%    SLIDE 13   %%
333 %%%%%%%%%%%%%%%%%%%% 
334 \begin{frame}{Performance evaluation of MPI programs}      
335         \begin{femtoBlock}{}
336               \vspace{-5 mm}
337               \begin{block}{\small Execution time prediction model}
338                      \centering{ $ \textcolor{red}{T_{new}} = \textcolor{blue}{T_{Max Comp Old} \cdot S + T_{{Min Comm Old}}}$}
339           \end{block}   
340           \vspace{10 mm}
341            \centering{\includegraphics[width=.4\textwidth]{c1/cg_per}
342            \quad%
343            \includegraphics[width=.4\textwidth]{c1/lu_pre}}
344             \vspace{5 mm}
345             
346            \small The maximum normalized error for CG=0.0073 \textbf{(the smallest)} and LU=0.031 \textbf{(the worst)}.
347            \end{femtoBlock}
348 \end{frame}
349
350
351
352
353  %%%%%%%%%%%%%%%%%%%%
354 %%    SLIDE 14   %%
355 %%%%%%%%%%%%%%%%%%%%  
356 \begin{frame}{Performance and energy reduction trade-off}      
357         \begin{femtoBlock}{} \vspace{-15 mm}
358                \begin{figure}
359      \centering
360      \subfloat[\small  Real relation.]{%
361      \includegraphics[width=.43\textwidth]{c1/file3}\label{fig:r2}}
362      \quad%
363      \subfloat[\small Converted relation.]{%
364      \includegraphics[width=.43\textwidth]{c1/file}\label{fig:r1}}%
365   \label{fig:rel}
366  % \caption{The energy and performance relation}
367 \end{figure}
368
369  Where:~~~ $\textcolor{blue}{Performance} = execution~time^{-1}$
370
371 %\vspace{-0.3cm}
372       \small 
373          \begin{block}{\small Our objective function}
374          \centering{$\textbf{\emph {\textcolor{red}{MaxDist}}} = \max_{j=1,2,\dots ,F}             
375                     (\overbrace{P_{Norm}(S_j)}^{{\textcolor{blue}{Maximize}}} - 
376                      \overbrace{E_{Norm}(S_j)}^{{\textcolor{blue}{Minimize}}} )$}
377                                          
378         \end{block}                
379         \end{femtoBlock}
380        
381 \end{frame}
382
383 %%%%%%%%%%%%%%%%%%%%
384 %%    SLIDE 15   %%
385 %%%%%%%%%%%%%%%%%%%% 
386  \begin{frame}{Scaling factor selection algorithm}
387 \vspace{-0.75cm}
388      \begin{center}
389       \includegraphics[width=.56 \textwidth]{c1/algo-homo}
390      \end{center}
391      
392 \end{frame}
393
394
395 %%%%%%%%%%%%%%%%%%%%
396 %%    SLIDE 16   %%
397 %%%%%%%%%%%%%%%%%%%% 
398 \begin{frame}{Scaling algorithm example}
399 \vspace{-0.75cm}
400      
401      \begin{figure}
402   \animategraphics[autopause,controls,scale=0.28,buttonsize=0.2cm]{10}{dvfs-homo/a-}{0}{159}
403   %\includegraphics[width=0.6\textwidth]{dvfs-homo/a-159}
404   \end{figure}
405 \end{frame}
406
407 %%%%%%%%%%%%%%%%%%%%
408 %%    SLIDE 17   %%
409 %%%%%%%%%%%%%%%%%%%% 
410 \begin{frame}{Experimental results }
411       \begin{femtoBlock}{}      
412         \begin{itemize}
413          \small
414            \item The experiments were executed on the simulator SimGrid/SMPI v3.10.\medskip
415            \item The proposed algorithm was applied to the NAS parallel benchmarks.\medskip
416            \item Each node in the cluster has 18 frequency values from \textbf{2.5$GHz$} to \textbf{800$MHz$}.\medskip
417            \item The proposed algorithm was evaluated over the A, B and C classes of the benchmarks using 4, 8 or 9 and 16 nodes respectively. \medskip
418            \item $P_d=20W$,  $P_s=4W$.
419                 \end{itemize}
420         \end{femtoBlock}
421 \end{frame}
422
423
424 %%%%%%%%%%%%%%%%%%%%
425 %%    SLIDE 18   %%
426 %%%%%%%%%%%%%%%%%%%% 
427 \begin{frame}{Experimental results}
428   \begin{femtoBlock}{}  
429       \centering { 
430      \includegraphics[width=.35\textwidth]{c1/ep}
431      \includegraphics[width=.35\textwidth]{c1/cg}
432      \includegraphics[width=.35\textwidth]{c1/bt}}
433      
434      \centering {\includegraphics[width=.55\textwidth]{c1/results.pdf}}
435  \end{femtoBlock}
436 \end{frame}
437
438
439   %%%%%%%%%%%%%%%%%%%%
440 %%    SLIDE 19   %%
441 %%%%%%%%%%%%%%%%%%%% 
442 \begin{frame}{Results comparison}
443          \begin{block}{\small Rauber and Rünger's optimal scaling factor} 
444            $S_{opt} = \sqrt[3]{\frac{2}{N} \cdot \frac{P_{dyn}}{P_{static}} \cdot
445             \left( 1 + \sum_{i=2}^{N} \frac{T_i^3}{T_1^3}\right) } $
446         \end{block}   
447         
448         
449     \centering {
450          %\includegraphics[width=.33\textwidth]{c1/c1.pdf}
451          %\qquad
452          %\includegraphics[width=.33\textwidth]{c1/c2.pdf}}
453            
454          
455             \includegraphics[width=.55\textwidth]{c1/compare-c.pdf}}
456         
457 \end{frame}
458
459
460 %%%%%%%%%%%%%%%%%%%%
461 %%    SLIDE 20   %%
462 %%%%%%%%%%%%%%%%%%%% 
463 \begin{frame}{The proposed new energy model}
464     \vspace{-0.75cm}     
465   \begin{figure}
466   \animategraphics[autopause,controls,scale=0.28,buttonsize=0.2cm]{10}{homo-model/a-}{0}{356}
467   %\includegraphics[width=0.6\textwidth]{homo-model/a-356}
468   \end{figure}
469 \end{frame}
470
471
472 %%%%%%%%%%%%%%%%%%%%
473 %%    SLIDE 21   %%
474 %%%%%%%%%%%%%%%%%%%% 
475 \begin{frame}{\large Comparing the new model with Rauber's model }
476  \vspace{0.1cm}    
477  \centering
478     \includegraphics[width=.45\textwidth]{c1/energy_con}
479     
480     \includegraphics[width=.5\textwidth]{c1/compare-scales}
481 \end{frame}
482
483
484
485
486    % \begin{frame}{Summary}
487      % \begin{femtoBlock}{}    
488      % \begin{itemize}
489       %\small
490        %\item  We have presented a new online scaling factor selection method that  \textcolor{blue}{optimizes simultaneously the energy and performance}.\medskip
491        % \item It predicts \textcolor{blue}{ the energy consumption and the performance} of the parallel applications. \medskip
492          %\item Our algorithm  \textcolor{blue}{saves more energy} when the communication and the other slacks times are big.     \medskip    
493          %\item It gives the  \textcolor{blue}{best trade-off between energy reduction and
494                % performance}. \medskip
495          %\item  Our method \ \textcolor{blue}{outperforms Rauber and Rünger's method} in terms of  energy-performance ratio.
496          %\item The proposed new energy model is  \textcolor{blue}{more accurate} then Rauber energy model.
497          %\end{itemize}      
498          
499         %\end{femtoBlock}
500 %\end{frame}
501
502
503 %%%%%%%%%%%%%%%%%%%%
504 %%    SLIDE 22    %%
505 %%%%%%%%%%%%%%%%%%%% 
506
507
508 \begin{frame}{The second contribution}
509
510 \section{\small {Energy optimization of a heterogeneous platform}}
511 \begin{center}
512
513
514 \bf  \Large \textcolor{blue}{Energy optimization of a parallel application with iterations running over a Heterogeneous platform}
515 \end{center}
516  \end{frame}
517  
518
519
520 %%%%%%%%%%%%%%%%%%%%
521 %%    SLIDE 23    %%
522 %%%%%%%%%%%%%%%%%%%% 
523  
524 \begin{frame}{Objectives}
525         \begin{femtoBlock}{} \vspace{-12 mm}
526                 \begin{itemize} \small
527                   \item   Proposing  \textcolor{blue}{new energy and performance models} for message passing  applications with iterations running  
528                           over a heterogeneous platform (cluster or Grid). \medskip
529                    \item  Studying the effect of the scaling factor $S$ on both the \textcolor{blue}{energy consumption  and the performance} of
530                           message passing iterative applications.    \medskip                      
531                    
532                    \item  Computing  the vector of scaling factors ($S_1, S_2, ..., S_n$)  producing \textcolor{blue} {the optimal trade-off} between
533                           the energy consumption and the performance. 
534                 \end{itemize}
535                  
536           \vspace{-10 mm}
537         \end{femtoBlock}      
538 \end{frame}
539
540
541 %%%%%%%%%%%%%%%%%%%%
542 %%    SLIDE 24    %%
543 %%%%%%%%%%%%%%%%%%%%
544 \begin{frame}{The execution time model}    
545       \vspace{-8 mm}
546      \begin{figure}[!t]
547        \centering
548        \includegraphics[scale=0.5]{c2/commtasks}
549        \label{fig:heter}
550      \end{figure}     
551        \vspace{-12 mm}
552        \medskip
553        
554     \begin{block}{\small The execution time prediction model}
555     \begin{equation}
556      \label{eq:perf}
557      \small\textcolor{red}{ T_{new}} = \textcolor{blue}{\max_{i=1,2,\dots,N} ({TcpOld_i} \cdot S_{i}) + \min_{i=1,2,\dots,N} (Tcm_i)}
558     \end{equation}
559     \end{block}   
560  \small  Where: $ \textcolor{red}{Tcm} = \textcolor{blue}{communication~times + slack~times}$
561   
562 \end{frame}
563  
564  %%%%%%%%%%%%%%%%%%%%
565 %%    SLIDE 25    %%
566 %%%%%%%%%%%%%%%%%%%%
567  \begin{frame}{The energy consumption model} 
568     The overall energy consumption of a message passing synchronous  application executed over
569      a heterogeneous platform can be computed as  follows:
570     \begin{multline}
571      \label{eq:energy}
572      \textcolor{red}{E} = \textcolor{blue}{\sum_{i=1}^{N} {(S_i^{-2} \cdot Pd_i \cdot  Tcp_i)}} + {} \\
573      \textcolor{blue}{\sum_{i=1}^{N} (Ps_i \cdot (\max_{i=1,2,\dots,N} (Tcp_i \cdot S_{i}) + {\min_{i=1,2,\dots,N} (Tcm_i))}}   
574       \hspace{10 mm}
575     \end{multline}
576     \underline{where}:\\
577     \textcolor{blue}{N} : is the number of nodes.
578 \end{frame}
579  
580  
581 %%%%%%%%%%%%%%%%%%%%
582 %%    SLIDE 26    %%
583 %%%%%%%%%%%%%%%%%%%%
584   \begin{frame}{The  energy  model example for heter. cluster}
585   \vspace{-0.5cm}
586  \begin{figure}
587   \animategraphics[autopause,controls,scale=0.28,buttonsize=0.2cm]{10}{heter-model/a-}{0}{272}
588   %\includegraphics[width=0.6\textwidth]{heter-model/a-272}
589   \end{figure}
590  \end{frame}
591  
592  
593  
594  
595 %%%%%%%%%%%%%%%%%%%%
596 %%    SLIDE 27    %%
597 %%%%%%%%%%%%%%%%%%%%
598 %\begin{frame}{The trade-off between energy  and performance}
599    % \vspace{-7 mm}
600     %\begin{figure}
601    %  \centering{ \includegraphics[width=.4\textwidth]{c2/heter}}
602    % \end{figure}
603    % \vspace{-7 mm}
604    % \textcolor{red}{\underline{Step1}}: computing the normalized energy \textcolor{blue}%{$E_{norm} = \frac{E_{reduced}} 
605     %{E_{Max}}$}. \\
606     % \textcolor{red}{\underline{Step2}}: computing the normalized performance \textcolor{blue}{$P_{norm} = \frac{T_{Max}}{T_{new}}$}.
607    
608    %  \begin{block}{\small The tradeoff model}
609     % \begin{equation}
610     %  \label{eq:max}
611     %  \textcolor{red}{MaxDist} =
612      % \mathop {\max_{i=1,\dots F}}_{j=1,\dots,N}
613       % (\overbrace{P_{norm}(S_{ij})}^{\text{\textcolor{blue}{Maximize}}} -
614       % \overbrace{E_{norm}(S_{ij})}^{\text{\textcolor{blue}{Minimize}}} )
615       %\end{equation}
616     % \end{block}  
617 %\end{frame}
618    
619  
620 %%%%%%%%%%%%%%%%%%%%
621 %%    SLIDE 28    %%
622 %%%%%%%%%%%%%%%%%%%%
623  \begin{frame}{The scaling algorithm for heter. cluster}
624
625  \centering
626    \includegraphics[width=.52\textwidth]{algo-heter}
627  \end{frame}
628  
629  
630  %%%%%%%%%%%%%%%%%%%%
631 %%    SLIDE 29    %%
632 %%%%%%%%%%%%%%%%%%%%
633  \begin{frame}{The scaling algorithm example}
634  \vspace{-0.5cm}
635  \centering
636  
637   \begin{figure}
638   \animategraphics[autopause,controls,scale=0.28,buttonsize=0.2cm]{10}{dvfs-heter/a-}{0}{650}
639  % \includegraphics[width=0.6\textwidth]{dvfs-heter/a-650}
640   \end{figure}
641 \end{frame}
642
643
644
645
646 %%%%%%%%%%%%%%%%%%%%
647 %%    SLIDE 30    %%
648 %%%%%%%%%%%%%%%%%%%%
649 \begin{frame}{Experiments over a heterogeneous cluster  }   
650         \begin{itemize}
651          \small
652            \item The experiments were executed on the simulator SimGrid/SMPI v3.10.\medskip
653            \item The scaling algorithm was applied to the NAS parallel benchmarks class C.\medskip
654            \item Four types of processors with different computing powers were used.\medskip
655            \item The benchmarks were executed with different number of nodes ranging from 4 to 144 nodes.\medskip
656            \item It was assumed that the total power consumption of the CPU consist of 80\% dynamic power and 20\% static power.
657                   \medskip
658          
659         \end{itemize}
660
661 \end{frame}  
662
663
664 %%%%%%%%%%%%%%%%%%%%
665 %%    SLIDE 31    %%
666 %%%%%%%%%%%%%%%%%%%%
667 \begin{frame}{The experimental results}
668    \vspace{-5 mm}
669    \begin{figure}[!t]
670    \centering
671     \includegraphics[width=0.8\textwidth]{c2/energy_saving.pdf}
672     
673     \textcolor{blue}{On average, it reduces the energy consumption by \textcolor{red}{29\%} 
674      for the class C of the NAS Benchmarks executed over 8 nodes}
675     
676    \end{figure}
677 \end{frame} 
678  
679  
680  
681 %%%%%%%%%%%%%%%%%%%%
682 %%    SLIDE 32    %%
683 %%%%%%%%%%%%%%%%%%%%
684 \begin{frame}{The experimental results}
685    \vspace{-5 mm}
686    \begin{figure}[!t]
687    \centering
688     
689     \includegraphics[width=.8\textwidth]{c2/perf_degra.pdf}
690    
691    \textcolor{blue}{On average, it degrades  by \textcolor{red}{3.8\%} the performance
692      of NAS Benchmarks class C executed over 8 nodes}
693      \end{figure}
694 \end{frame} 
695  
696  
697  
698 %%%%%%%%%%%%%%%%%%%%
699 %%    SLIDE 33    %%
700 %%%%%%%%%%%%%%%%%%%%
701 \begin{frame}{The results of the three power scenarios}
702    \vspace{-5 mm}
703    \begin{figure}[!t]
704    \centering
705    \includegraphics[width=.55\textwidth]{c2/three_power.pdf}
706    \vspace{10 mm}
707    \includegraphics[width=.55\textwidth]{c2/three_scenarios.pdf}
708    \end{figure}
709 \end{frame}  
710
711
712
713 %%%%%%%%%%%%%%%%%%%%
714 %%    SLIDE 34    %%
715 %%%%%%%%%%%%%%%%%%%%
716 \begin{frame}{Comparing the objective function to EDP}
717      
718      EDP is the products between the energy consumption and the delay.
719     \vspace{-5 mm}
720     \begin{figure}[!t]
721     \centering
722     \includegraphics[width=.55\textwidth]{c2/avg_compare.pdf}
723     
724     \includegraphics[width=.55\textwidth]{c2/compare_with_EDP.pdf}
725     \end{figure}
726 \end{frame} 
727
728
729
730
731 %%%%%%%%%%%%%%%%%%%%
732 %%    SLIDE 35    %%
733 %%%%%%%%%%%%%%%%%%%%
734 %\begin{frame}{Energy optimization of grid platform} 
735   % \begin{figure}[!t]
736    % \centering
737          %    \includegraphics[width=.6\textwidth]{c2/grid5000.pdf}
738              
739         %   \small  10 sites distributed over France and Luxembourg
740         %\end{figure}
741 %\end{frame} 
742
743
744 %%%%%%%%%%%%%%%%%%%%
745 %%    SLIDE 36    %%
746 %%%%%%%%%%%%%%%%%%%%
747 \begin{frame}{The grid architecture}
748 \begin{center}
749 \includegraphics[width=.8\textwidth]{c2/init_freq.pdf}
750 \end{center}
751
752  %\begin{frame}{Performance, Energy and trade-off models} \small
753   %\begin{block}{\small The performance model of grid}
754    % \begin{equation}
755   %\label{eq:perf}
756   %\Tnew = \mathop{\max_{i=1,\dots N}}_{j=1,\dots,M_i}({\TcpOld[ij]} \cdot S_{ij}) 
757  % +\mathop{\min_{j=1,\dots,M_h}}  (\Tcm[hj])
758 %\end{equation}
759     %\end{block}   
760  
761  
762  %\begin{block}{\small The energy model of grid}\small
763   %  \begin{equation}
764   %\label{eq:energy}
765  %E = \sum_{i=1}^{N} \sum_{i=1}^{M_i} {(S_{ij}^{-2} \cdot \Pd[ij] \cdot  \Tcp[ij])} +  
766 % \sum_{i=1}^{N} \sum_{j=1}^{M_i} (\Ps[ij] \cdot \Tnew)
767 %\end{equation}
768    % \end{block}  
769
770 %\begin{block}{\small The trade-off model of grid}
771 %\small
772     %\begin{equation}
773    %\label{eq:max}
774   %\MaxDist =
775   %\mathop{  \mathop{\max_{i=1,\dots N}}_{j=1,\dots,M_i}}_{k=1,\dots,F_j}
776    %   (\overbrace{\Pnorm(S_{ijk})}^{\text{Maximize}} -
777     %   \overbrace{\Enorm(S_{ijk})}^{\text{Minimize}} )
778 %\end{equation}
779    % \end{block}  
780      
781      
782  \end{frame}
783   
784   
785   
786 %%%%%%%%%%%%%%%%%%%%
787 %%    SLIDE 37    %%
788 %%%%%%%%%%%%%%%%%%%%
789  \begin{frame}{Experiments over Grid'5000}
790  
791    \textcolor{blue}{The experiments were conducted using three 
792           clusters distributed over one or two sites.}
793            \vspace{-7 mm}
794           \begin{center}
795           \includegraphics[width=.5\textwidth]{c2/grid5000-2.pdf}
796           \end{center}          
797       \vspace{-10 mm}
798   \textcolor{blue}{Grid'5000 power measurement tools were used.} 
799         \vspace{-9 mm}
800   \begin{center}
801           \includegraphics[width=.5\textwidth]{c2/power_consumption.pdf}
802           \end{center}
803           
804       
805 \end{frame}   
806
807
808
809
810 %%%%%%%%%%%%%%%%%%%%
811 %%    SLIDE 38    %%
812 %%%%%%%%%%%%%%%%%%%%
813 \begin{frame}{Experiments over Grid'5000}
814
815    \begin{minipage}{0.4\textwidth}
816        %\textcolor{blue}{Execution the NAS class D on 16 nodes saves the energy by  
817         %\textcolor{red}{30\%}}
818      \small \textcolor{blue}{The average energy saving =  \textcolor{red}{30\%}}
819    \end{minipage}  
820      \begin{minipage}{0.55\textwidth}
821         \begin{figure}[h!]
822           \includegraphics[width=0.83 \textwidth]{c2/eng_s.eps}
823      \end{figure}
824 \end{minipage}
825
826          \begin{minipage}{0.4\textwidth}
827            %\textcolor{blue}{Execution the NAS class D on 16 nodes degrades the 
828                 %performance by \textcolor{red}{3.2\%}}
829       \small  \textcolor{blue}{The average performance degradation  =  \textcolor{red}{3.2\%}}  
830         \end{minipage}
831        \begin{minipage}{0.55\textwidth}
832          \begin{figure}[h!] 
833            \includegraphics[width=.83\textwidth]{c2/per_d.eps}
834          \end{figure}  
835           \end{minipage}
836  \end{frame}
837
838
839
840 %%%%%%%%%%%%%%%%%%%%
841 %%    SLIDE 39    %%
842 %%%%%%%%%%%%%%%%%%%%
843 \begin{frame}{Experiments over Grid'5000}
844    \textcolor{blue}{One core  and Multi-cores per node results:}
845    
846   \begin{figure}[h!] 
847   \includegraphics[width=.48\textwidth]{c2/eng_s_mc.eps}
848   \hspace{0.3cm}
849   \includegraphics[width=.48\textwidth]{c2/per_d_mc.eps}
850   \end{figure} 
851   
852   \centering \small \textcolor{blue}{Using multi-cores per node scenario decreases the computations to communications ratio}.
853 \end{frame}
854
855
856
857 %\begin{frame}{Summary}
858 %\begin{itemize}
859      % \small
860         % \item  Two scaling algorithm were applies to \textcolor{blue}{heterogeneous %cluster} and \textcolor{blue}{grid}.
861         % \item  A new \textcolor{blue}{energy} and \textcolor{blue}{performance} models were proposed.
862       %   \item  The experimental results ere conducted over \textcolor{blue}{SimGrid}  simulators and real 
863           %test-bed \textcolor{blue}{Grid'5000}.
864          
865          %\item The algorithm saves the energy by \textcolor{blue}{29\%} and only
866         %  degrades the performance by \textcolor{blue}{3.8\%} for simulated  heterogeneous
867       %    clusters.
868          
869          %\item The algorithm saves the energy by \textcolor{blue}{30\%} and only
870         % degrades the performance by \textcolor{blue}{3.2\%} for  Grid'5000 results.
871          
872        %  \item  The proposed method \textcolor{blue}{outperforms the EDP method} in terms of  energy-performance ratio.
873      %    \end{itemize}   
874 %\end{frame}
875
876
877 %%%%%%%%%%%%%%%%%%%%
878 %%    SLIDE 40    %%
879 %%%%%%%%%%%%%%%%%%%%
880 \begin{frame}{The third contribution}
881 \section{\small {Energy optimization of asynchronous applications}}
882 \begin{center}
883 \bf  \Large \textcolor{blue}{Energy optimization of asynchronous iterative message passing  applications}
884 \end{center}
885  \end{frame}
886
887
888
889 %%%%%%%%%%%%%%%%%%%%
890 %%    SLIDE 41   %%
891 %%%%%%%%%%%%%%%%%%%%
892 \begin{frame}{Problem definition}\vspace{0.8 mm}
893 \textcolor{blue}{The execution of a synchronous parallel iterative application over a grid }
894 \vspace{-8 mm}
895 \begin{figure}
896  \animategraphics[autopause,controls,scale=0.25,buttonsize=0.2cm]{10}{syn/a-}{0}{503}
897  %\includegraphics[width=0.6\textwidth]{syn/a-503}
898   \end{figure}
899 \end{frame}
900
901
902
903 %%%%%%%%%%%%%%%%%%%%
904 %%    SLIDE 42   %%
905 %%%%%%%%%%%%%%%%%%%%
906 \begin{frame}{Problem definition}\vspace{0.8 mm}
907 \textcolor{blue}{The execution of an asynchronous parallel iterative application over a grid }
908 \vspace{-8 mm}
909 \begin{figure}
910  \animategraphics[autopause,controls,scale=0.25,buttonsize=0.2cm]{10}{asyn/a-}{0}{440}
911  %\includegraphics[width=0.6\textwidth]{asyn/a-440}
912   \end{figure}
913 \end{frame}
914
915
916
917 %%%%%%%%%%%%%%%%%%%%
918 %%    SLIDE 43   %%
919 %%%%%%%%%%%%%%%%%%%%
920 \begin{frame}{Solution}\vspace{0.8mm}
921 \textcolor{blue}{Using asynchronous communications with DVFS }
922 \vspace{-8 mm}
923 \begin{figure}
924   \animategraphics[autopause,controls,scale=0.25,buttonsize=0.2cm]{10}{asyn+dvfs/a-}{0}{314}
925   %\includegraphics[width=0.6\textwidth]{asyn+dvfs/a-314}
926   \end{figure}
927 \end{frame}
928
929
930
931
932 %%%%%%%%%%%%%%%%%%%%
933 %%    SLIDE 44   %%
934 %%%%%%%%%%%%%%%%%%%%
935 %\begin{frame}{The performance models}
936
937 %\begin{block}{\small The performance model of Asynch. Applications}\small
938 %\begin{equation}
939   %\label{eq:asyn_time}
940  %\Tnew =  \frac{\sum_{i=1}^{N} \sum_{j=1}^{M_i}({\TcpOld[ij]} \cdot S_{ij})} {N  \cdot M_i }
941 %\end{equation}
942 %\end{block}
943
944
945 %\begin{block}{\small The performance model of Hybrid Applications}\small
946 %\begin{equation}
947   %\label{eq:asyn_perf}
948   %\Tnew =  \frac{\sum_{i=1}^{N} (\max_{j=1,\dots, M_i} ({\TcpOld[ij]} \cdot S_{ij}) +  
949    %\min_{j=1,\dots,M_i} ({\Ltcm[ij]}))}{N}
950 %\end{equation}
951 %\end{block}
952
953
954 %\end{frame}
955
956
957
958 %%%%%%%%%%%%%%%%%%%%
959 %%    SLIDE 45   %%
960 %%%%%%%%%%%%%%%%%%%%
961 %\begin{frame}{The energy consumption models}
962
963 %\begin{block}{\small The energy model of Asynch. Applications}\small
964 %\begin{equation}
965   %\label{eq:asyn_energy1}
966 % E = \sum_{i=1}^{N} \sum_{j=1}^{M_i} {(S_{ij}^{-2} \cdot  \Tcp[ij] \cdot (\Pd[ij]+\Ps[ij]) )} 
967 %\end{equation} 
968 %\end{block}
969
970
971 %\begin{block}{\small The energy model of Hybrid Applications}\small
972 %\begin{multline}
973   %\label{eq:asyn_energy}
974  %E = \sum_{i=1}^{N} \sum_{j=1}^{M_i} {(S_{ij}^{-2} \cdot \Pd[ij] \cdot  \Tcp[ij])} +  \sum_{i=1}^{N} \sum_{j=1}^{M_i} (\Ps[ij] \cdot \\
975 % ( \mathop{\max_{j=1,\dots,M_i}} ({\Tcp[ij]} \cdot S_{ij}) + \mathop{\min_{j=1,\dots,M_i}} ({\Ltcm[ij]}))) 
976 %\end{multline}
977 %\end{block}
978 %\end{frame}
979
980
981
982 %%%%%%%%%%%%%%%%%%%%
983 %%    SLIDE 44   %%
984 %%%%%%%%%%%%%%%%%%%%
985 \begin{frame}{The performance and the energy models }
986
987 \centering
988 \includegraphics[width=0.9\textwidth]{syn-vs-asyn.pdf}
989 \end{frame}
990
991
992
993
994
995 %%%%%%%%%%%%%%%%%%%%
996 %%    SLIDE 46   %%
997 %%%%%%%%%%%%%%%%%%%%
998 \begin{frame}{The scaling algorithm for Asynch.  applications}
999 \vspace{-0.1 mm}
1000 \centering
1001 \includegraphics[width=0.55\textwidth]{algo-hybrid.pdf}
1002 \end{frame}
1003
1004
1005
1006 %%%%%%%%%%%%%%%%%%%%
1007 %%    SLIDE 47   %%
1008 %%%%%%%%%%%%%%%%%%%%
1009 \begin{frame}{The experiments}
1010    \vspace{-5 mm}
1011    \begin{figure}[!t]
1012    \begin{itemize}
1013       \small
1014         \item The architecture of the grid:
1015    \end{itemize}
1016     \includegraphics[width=0.5\textwidth]{c3/hybrid-model.pdf} 
1017    \end{figure}
1018    \begin{itemize}
1019       \small
1020         \item Applying the proposed algorithm to the asynchronous iterative message passing multi-splitting method.
1021         \item Evaluating the application over the simulator and Grid'5000.
1022    \end{itemize}
1023 \end{frame} 
1024
1025
1026
1027 %%%%%%%%%%%%%%%%%%%%
1028 %%    SLIDE 48   %%
1029 %%%%%%%%%%%%%%%%%%%%
1030 \begin{frame}{The simulation results}
1031 \centering \small \textcolor{blue}{The best scenario in terms of energy and performance  is the Async. MS with Sync. DVFS}
1032
1033 \centering
1034     \includegraphics[scale=0.42]{c3/energy_saving.eps}
1035
1036  \centering  The average energy saving  = \textcolor{red}{22\%}
1037 \end{frame} 
1038
1039
1040
1041 %%%%%%%%%%%%%%%%%%%%
1042 %%    SLIDE 49   %%
1043 %%%%%%%%%%%%%%%%%%%%
1044 \begin{frame}{The simulation results}
1045 \centering
1046    
1047      \includegraphics[scale=0.42]{c3/perf_degra.eps}
1048      
1049  \centering    The average speed-up  = \textcolor{red}{5.72\%}
1050 \end{frame} 
1051
1052
1053
1054 %%%%%%%%%%%%%%%%%%%%
1055 %%    SLIDE 50   %%
1056 %%%%%%%%%%%%%%%%%%%%
1057  \begin{frame}{The Grid'5000 results}
1058    \vspace{-20 mm}
1059    \begin{figure}[!t]
1060    \centering
1061    \hspace{-8 mm}
1062     \includegraphics[width=0.53\textwidth]{c3/energy-s-compare.eps}                    
1063     \includegraphics[width=0.53\textwidth]{c3/perf-deg-compare.eps}
1064    \end{figure}
1065     \vspace{-5 mm}
1066      \centering \footnotesize
1067 The average energy saving = \textcolor{red}{26.93\%}, the average speed-up =  \textcolor{red}{21.48\%}
1068 \end{frame} 
1069
1070
1071 %%%%%%%%%%%%%%%%%%%%
1072 %%    SLIDE 51   %%
1073 %%%%%%%%%%%%%%%%%%%%
1074 \begin{frame}{The comparison results}
1075  \centering
1076     \includegraphics[width=.5\textwidth]{c3/compare.eps}
1077     
1078     \includegraphics[width=.5\textwidth]{c3/compare_scales.eps}
1079 \end{frame} 
1080
1081
1082
1083
1084 %%%%%%%%%%%%%%%%%%%%
1085 %%    SLIDE 52  %%
1086 %%%%%%%%%%%%%%%%%%%%
1087 \begin{frame}{Conclusions}
1088 \section{Conclusions and Perspectives}
1089 \begin{itemize}
1090
1091 \small  \barrow  Three \textcolor{blue}{ new energy consumption and performance} models were proposed for synchronous or asynchronous parallel applications with iterations running over 
1092 \textcolor{blue}{homogeneous and  heterogeneous clusters or grids}.  
1093       
1094
1095
1096 \small \barrow \textcolor{blue}{A new objective function} to optimize both the energy consumption and the performance was proposed.
1097
1098 \small \barrow \textcolor{blue}{New online frequency selecting algorithms} for clusters and grids were developed.
1099
1100 \small \barrow The proposed algorithms were applied to the \textcolor{blue}{NAS parallel benchmarks} and \textcolor{blue}{the
1101 Multi-splitting} method.
1102
1103 \small \barrow The proposed algorithms were evaluated over the \textcolor{blue}{SimGrid simulator} and over  the \textcolor{blue}{Grid'5000 testbed}.
1104
1105 \small  \barrow All the proposed methods were compared to either \textcolor{blue}{Rauber and Rünger's  method} or to the \textcolor{blue}{EDP objective function}.
1106
1107
1108 \end{itemize}
1109 \end{frame}
1110
1111
1112
1113 %%%%%%%%%%%%%%%%%%%%
1114 %%    SLIDE 53   %%
1115 %%%%%%%%%%%%%%%%%%%%
1116 \begin{frame}{Publications}
1117
1118 \begin{block}{\small Journal Articles }\scriptsize
1119 \begin{enumerate}[$\lbrack$1$\rbrack$]
1120
1121 \item Ahmed Fanfakh, Jean-Claude Charr, Raphaël Couturier,  Arnaud Giersch. Optimizing the energy consumption of message passing applications with iterations executed over grids. \textit{Journal of Computational 
1122       Science}, 2016.
1123
1124 \item Ahmed Fanfakh, Jean-Claude Charr, Raphaël Couturier,  Arnaud Giersch. Energy Consumption Reduction for     
1125       Asynchronous Message Passing Applications.  \textit{Journal of Supercomputing}, 2016, (Submitted)
1126  
1127 \end{enumerate}
1128 \end{block}
1129
1130
1131 \begin{block}{\small Conference Articles }\scriptsize
1132
1133 \begin{enumerate}[$\lbrack$1$\rbrack$]
1134
1135 \item Jean-Claude Charr, Raphaël Couturier, Ahmed Fanfakh, Arnaud Giersch. Dynamic Frequency Scaling for
1136       Energy Consumption Reduction in Distributed MPI Programs. \textit{ISPA 2014}, pp.
1137       225-230. IEEE Computer Society, Milan, Italy (2014).
1138
1139 \item Jean-Claude Charr, Raphaël Couturier, Ahmed Fanfakh, Arnaud Giersch. Energy Consumption Reduction
1140       with DVFS for Message Passing Iterative Applications on Heterogeneous Architectures.
1141       \textit{The $16^{th}$ PDSEC}. pp. 922-931. IEEE Computer Society, INDIA (2015).
1142
1143 \item Ahmed Fanfakh, Jean-Claude Charr, Raphaël Couturier,  Arnaud Giersch. CPUs Energy Consumption
1144       Reduction for Asynchronous Parallel Methods Running over Grids. \textit{The $19^{th}$ CSE conference}. IEEE Computer Society, 
1145       Paris (2016).  
1146
1147 \end{enumerate}
1148
1149 \end{block}
1150 \end{frame}
1151
1152
1153 %%%%%%%%%%%%%%%%%%%%
1154 %%    SLIDE 54   %%
1155 %%%%%%%%%%%%%%%%%%%%
1156 \begin{frame}{Perspectives}
1157
1158 \begin{itemize}
1159
1160 \small  \barrow The proposed algorithms should  take into consideration the
1161 \textcolor{blue}{variability between some iterations}.
1162
1163 \small  \barrow The proposed algorithms should be applied to \textcolor{blue}{other message passing methods with iterations} in order to see how they adapt to the characteristics of these methods.
1164
1165 \small \barrow The proposed algorithms for heterogeneous platforms should be applied to heterogeneous platforms composed of \textcolor{blue}{CPUs and GPUs}.
1166
1167 \small \barrow Comparing the results returned by the energy models to the values given by  \textcolor{blue}{real instruments that measure the energy consumptions} of CPUs during the execution time.
1168 \end{itemize}
1169
1170 \end{frame}
1171
1172 %%%%%%%%%%%%%%%%%%%%
1173 %%    SLIDE 55  %%
1174 %%%%%%%%%%%%%%%%%%%%
1175 \begin{frame}{Fin} \vspace{-10 mm}
1176
1177             \centering \Large \textcolor{blue}{Thank you for your listening}
1178             
1179             \vspace{2cm}
1180             \centering \textcolor{blue}{ {\Large Questions?}}
1181         
1182 \end{frame}
1183 \end{document}
1184 %  _____ ___ _   _ 
1185 % |  ___|_ _| \ | |
1186 % | |_   | ||  \| |
1187 % |  _|  | || |\  |
1188 % |_|   |___|_| \_|
1189 %