2 \usepackage{beamerthemefemto}
3 \usepackage[latin1]{inputenc}
4 \usepackage[T1]{fontenc}
5 \DeclareGraphicsExtensions{.jpg, .png , .pdf, .bmp, .pdftex}
6 \usepackage{algorithm,algorithmicx,algpseudocode}
7 \usepackage{graphicx,graphics}
16 \newcommand{\AG}[2][inline]{%
17 \todo[color=green!50,#1]{\sffamily\textbf{AG:} #2}\xspace}
18 \newcommand{\JC}[2][inline]{%
19 \todo[color=red!10,#1]{\sffamily\textbf{JC:} #2}\xspace}
20 \definecolor{myblue}{RGB}{0,29,119}
21 \newcommand{\Xsub}[2]{{\ensuremath{#1_\mathit{#2}}}}
23 %% used to put some subscripts lower, and make them more legible
24 \newcommand{\fxheight}[1]{\ifx#1\relax\relax\else\rule{0pt}{1.52ex}#1\fi}
26 \newcommand{\CL}{\Xsub{C}{L}}
27 \newcommand{\Dist}{\mathit{Dist}}
28 \newcommand{\EdNew}{\Xsub{E}{dNew}}
29 \newcommand{\Eind}{\Xsub{E}{ind}}
30 \newcommand{\Enorm}{\Xsub{E}{Norm}}
31 \newcommand{\Eoriginal}{\Xsub{E}{Original}}
32 \newcommand{\Ereduced}{\Xsub{E}{Reduced}}
33 \newcommand{\Es}{\Xsub{E}{S}}
34 \newcommand{\Fdiff}[1][]{\Xsub{F}{diff}_{\!#1}}
35 \newcommand{\Fmax}[1][]{\Xsub{F}{max}_{\fxheight{#1}}}
36 \newcommand{\Fnew}{\Xsub{F}{new}}
37 \newcommand{\Vnew}{\Xsub{V}{new}}
38 \newcommand{\Vmax}{\Xsub{V}{max}}
39 \newcommand{\Ileak}{\Xsub{I}{leak}}
40 \newcommand{\Kdesign}{\Xsub{K}{design}}
41 \newcommand{\MaxDist}{\mathit{Max}\Dist}
42 \newcommand{\MinTcm}{\mathit{Min}\Tcm}
43 \newcommand{\Ntrans}{\Xsub{N}{trans}}
44 \newcommand{\Pd}[1][]{\Xsub{P}{d}_{\fxheight{#1}}}
45 \newcommand{\PdNew}{\Xsub{P}{dNew}}
47 \newcommand{\PdOld}{\Xsub{P}{dOld}}
48 \newcommand{\Pnorm}{\Xsub{P}{Norm}}
49 \newcommand{\Tnorm}{\Xsub{T}{Norm}}
50 \newcommand{\Ps}[1][]{\Xsub{P}{s}_{\fxheight{#1}}}
51 \newcommand{\Scp}[1][]{\Xsub{S}{cp}_{#1}}
52 \newcommand{\Sopt}[1][]{\Xsub{S}{opt}_{#1}}
53 \newcommand{\Tcm}[1][]{\Xsub{T}{cm}_{\fxheight{#1}}}
54 \newcommand{\Tcp}[1][]{\Xsub{T}{cp}_{#1}}
55 \newcommand{\TcpOld}[1][]{\Xsub{T}{cpOld}_{#1}}
56 \newcommand{\Tnew}{\Xsub{T}{New}}
57 \newcommand{\Told}{\Xsub{T}{Old}}
58 \newcommand{\Ltcm}[1][]{\Xsub{L}{tcm}_{\fxheight{#1}}}
59 \newcommand{\Etcm}[1][]{\Xsub{E}{tcm}_{\fxheight{#1}}}
60 \newcommand{\Niter}[1][]{\Xsub{N}{iter}_{\fxheight{#1}}}
61 \newcommand{\Pmax}[1][]{\Xsub{P}{max}_{\fxheight{#1}}}
62 \newcommand{\Pidle}[1][]{\Xsub{P}{idle}_{\fxheight{#1}}}
65 \definecolor{myblue}{RGB}{0,29,119}
66 \usepackage[textsize=footnotesize]{todonotes}
67 \newcommand{\bsquare}{\item[\color{myblue}\ding{110}]}
68 \newcommand{\barrow}{\item[\color{myblue}\ding{228}]}
69 \newcommand{\bwarrow}{\item[\color{myblue}\ding{227}]}
70 \DeclareGraphicsExtensions{.jpg, .png , .pdf, .bmp, .pdftex}
74 %\title{Energy Consumption Optimization of Parallel Applications with
75 %Iterations using CPU Frequency Scaling}
78 \title{ \textbf{Energy Consumption Optimization of Parallel Applications with Iterations using CPU Frequency Scaling} \\ \vspace{0.2cm} \hspace{1.8cm}\textbf{\textcolor{cyan}{\small PhD Dissertation Defense}}}\vspace{-0.5cm}
79 \author{ \textbf{Ahmed Badri Muslim Fanfakh} \\ \vspace{0.5cm}\small Under the supervision of: \\ \textcolor{cyan}{\small Raphaël COUTURIER and Jean-Claude CHARR} \\\vspace{0.1cm} \textcolor{blue}{ UBFC - FEMTO-ST - DISC Dept. - AND Team} \\ ~~~~~~~~~~~~~~~~~~~~~ \textbf{\textcolor{blue}{ 17 October 2016 }}}
83 % ____ _____ ____ _ _ _____
84 % | _ \| ____| __ )| | | |_ _|
85 % | | | | _| | _ \| | | | | |
86 % | |_| | |___| |_) | |_| | | |
87 % |____/|_____|____/ \___/ |_|
90 \setbeamertemplate{background}{\titrefemto}
105 \setbeamertemplate{background}{\pagefemto}
106 \begin{frame}{Outline}
108 \setbeamertemplate{section in toc}[sections numbered]
116 \begin{frame}{Introduction and problem definition}
117 \section{\small {Introduction and Problem definition}}
118 \bf \textcolor{blue}{To get more computing power:}
119 \begin{minipage}{0.5\textwidth}
120 \textcolor{blue}{1)} \small \bf \textcolor{black}{Increase the frequency of a processor.\\ (limited due to overheating)}
122 \begin{minipage}{0.6\textwidth}
126 \includegraphics[width=0.7\textwidth]{fig/freq-years}
130 \begin{minipage}{0.5\textwidth}
131 \textcolor{blue}{2)} \small \bf \textcolor{black}{Use more nodes.}
133 \textcolor{black}{The supercomputer Tianhe-2 has more than 3 million cores and consumes around 17.8 megawatts.}
136 \begin{minipage}{0.6\textwidth}
138 \includegraphics[width=0.7\textwidth]{fig/clusters}
149 \begin{frame}{Techniques for energy consumption reduction}
151 \textcolor{blue}{1)} \bf \textcolor{black}{Switch-off idle nodes method}
154 \animategraphics[autopause,loop,controls,scale=0.25,buttonsize=0.2cm]{200}{on-off/a-}{0}{69}
155 %\includegraphics[width=0.6\textwidth]{on-off/a-69}
162 \begin{frame}{Techniques for energy consumption reduction}
164 \textcolor{blue}{2)} \bf \textcolor{black}{Dynamic Voltage and Frequency Scaling (DVFS)}
167 \animategraphics[autopause,controls,scale=0.25,buttonsize=0.2cm]{10}{DVFS-meq/a-}{0}{109}
168 %\includegraphics[width=0.6\textwidth]{DVFS-meq/a-109}
177 \begin{frame}{Motivations}
179 \section{\small {Motivations}}
180 \textcolor{blue}{Why we used the DVFS method:}
182 \begin{minipage}{0.5\textwidth}
185 \item \small \textcolor{black}{ The CPU is the component that consumes the highest amount of energy in a node \textsuperscript{1}. }
190 \begin{minipage}{0.5\textwidth}
193 \includegraphics[width=0.85\textwidth]{fig/node-power}
198 \begin{itemize} \item \small \textcolor{black}{DVFS reduces the energy consumption while
199 keeping all the nodes working.}
200 \item \small \textcolor{black}{It has a very small overhead compared to switching-off the idle nodes.} \end{itemize}
204 \begin{block}{\textcolor{white}{Challenge and Objective}}
206 \small \textcolor{blue}{Challenge:} \textcolor{black}{DVFS is used to reduce the energy consumption, \textcolor{blue}{but} it also degrades the performance of the CPU.}
209 \small \textcolor{blue}{Objective:} \textcolor{black}{Applying the DVFS to minimize the energy consumption while maintaining the performance of the parallel application.}
212 \tiny \textsuperscript{1} Fan, X., Weber, W., and Barroso, L. A. 2007. Power provisioning
213 for a warehouse-sized computer.
224 \begin{frame}{The first contribution}
226 \section{\small {Energy optimization of a homogeneous platform}}
228 % \includegraphics[width=0.6\textwidth]{white.pdf}
231 \bf \Large \textcolor{blue}{Energy optimization of a parallel application with iterations running over a homogeneous platform}
241 \begin{frame}{Objectives}
243 \begin{itemize} \small \justifying
245 \item Study the effect of the scaling factor on the \textbf{energy consumption and performance } of parallel applications with iterations. \medskip
247 \item Discovering the \textbf{energy-performance trade-off relation} when changing the frequency of the processor.\medskip
248 \item Proposing an algorithm for selecting the scaling factor that produces \textbf {the optimal trade-off} between the energy consumption and the performance. \medskip
249 \item Comparing the proposed algorithm to existing methods.
252 %\footnote{\tiny Thomas Rauber and Gudula Rünger. Analytical modeling and simulation of the
253 %energy consumption \\ \quad ~ ~\quad of independent tasks. In Proceedings of the Winter Simulation Conference, 2012.} method that our method best on.
255 %\let\thefootnote\relax\footnote{}
267 \begin{frame}{Execution of synchronous parallel tasks}
271 \subfloat[Synchronous imbalanced communications]{%
272 \includegraphics[scale=0.49]{c1/commtasks}\label{fig:h1}}
273 \subfloat[Synchronous imbalanced computations]{%
274 \includegraphics[scale=0.49]{c1/compt}\label{fig:h2}}
275 % \caption{Parallel tasks on homogeneous platform}
287 \begin{frame}{Energy model for a homogeneous platform}
288 The power consumed by a processor divided into two power metrics: the dynamic (\textcolor{red}{$P_d$}) and static
289 (\textcolor{red}{$P_s$}) power.
292 \textcolor{red}{ P_d} = \textcolor{blue}{\alpha \cdot CL \cdot V^2 \cdot F}
294 \scriptsize \underline{Where}: \\
295 \scriptsize {\textcolor{blue}{$\alpha$}: switching activity \hspace{15 mm} \textcolor{blue}{$CL$}: load capacitance\\
296 \textcolor{blue}{$V$}: the supply voltage \hspace{14 mm} \textcolor{blue}{$F$}: operational frequency}
299 \small \textcolor{red}{P_s} = \textcolor{blue}{V \cdot N_{trans} \cdot K_{design} \cdot I_{Leak}}
302 \scriptsize{ \textcolor{blue}{$V$}: the supply voltage. \hspace{28 mm} \textcolor{blue}{$N_{trans}$}: number of transistors. \\
303 \textcolor{blue}{$K_{design}$}: design dependent parameter. \hspace{8 mm} \textcolor{blue}{$I_{leak}$}: technology dependent
311 \begin{frame}{Energy model for a homogeneous platform}
313 The frequency scaling factor is the ratio between the maximum and the new frequency, \textcolor{blue}{$S = \frac{F_{max}}{F_{new}}$}. \medskip
317 \begin{block}{\small Rauber and Rünger's energy model}
318 $ E = P_{d} \cdot S_1^{-2} \cdot
319 \left( T_1 + \sum_{i=2}^{N} \frac{T_i^3}{T_1^2} \right) +
320 P_{s} \cdot S_1 \cdot T_1 \cdot N$
322 \textcolor{blue}{$S_1$}: the maximum scaling factor.\\
323 \textcolor{blue}{$P_{d}$}: the dynamic power.\\
324 \textcolor{blue}{$P_{s}$}: the static power.\\
325 \textcolor{blue}{$T_I$}: the execution time of the slower task.\\
326 \textcolor{blue}{$T_i$}: the execution time of task i.\\
327 \textcolor{blue}{$N$}: the number of nodes.
335 \begin{frame}{Performance evaluation of MPI programs}
338 \begin{block}{\small Execution time prediction model}
339 \centering{ $ \textcolor{red}{T_{new}} = \textcolor{blue}{T_{Max Comp Old} \cdot S + T_{{Min Comm Old}}}$}
342 \centering{\includegraphics[width=.4\textwidth]{c1/cg_per}
344 \includegraphics[width=.4\textwidth]{c1/lu_pre}}
347 \small The maximum normalized error for CG=0.0073 \textbf{(the smallest)} and LU=0.031 \textbf{(the worst)}.
357 \begin{frame}{Performance and energy reduction trade-off}
358 \begin{femtoBlock}{} \vspace{-15 mm}
361 \subfloat[\small Real relation.]{%
362 \includegraphics[width=.43\textwidth]{c1/file3}\label{fig:r2}}
364 \subfloat[\small Converted relation.]{%
365 \includegraphics[width=.43\textwidth]{c1/file}\label{fig:r1}}%
367 % \caption{The energy and performance relation}
370 Where:~~~ $\textcolor{blue}{Performance} = execution~time^{-1}$
374 \begin{block}{\small Our objective function}
375 \centering{$\textbf{\emph {\textcolor{red}{MaxDist}}} = \max_{j=1,2,\dots ,F}
376 (\overbrace{P_{Norm}(S_j)}^{{\textcolor{blue}{Maximize}}} -
377 \overbrace{E_{Norm}(S_j)}^{{\textcolor{blue}{Minimize}}} )$}
387 \begin{frame}{Scaling factor selection algorithm}
390 \includegraphics[width=.56 \textwidth]{c1/algo-homo}
399 \begin{frame}{Scaling algorithm example}
403 \animategraphics[autopause,controls,scale=0.28,buttonsize=0.2cm]{10}{dvfs-homo/a-}{0}{159}
404 %\includegraphics[width=0.6\textwidth]{dvfs-homo/a-159}
411 \begin{frame}{Experimental results }
415 \item The experiments were executed on the simulator SimGrid/SMPI v3.10.\medskip
416 \item The proposed algorithm was applied to the NAS parallel benchmarks.\medskip
417 \item Each node in the cluster has 18 frequency values from \textbf{2.5$GHz$} to \textbf{800$MHz$}.\medskip
418 \item The proposed algorithm was evaluated over the A, B and C classes of the benchmarks using 4, 8 or 9 and 16 nodes respectively. \medskip
419 \item $P_d=20W$, $P_s=4W$.
428 \begin{frame}{Experimental results}
431 \includegraphics[width=.35\textwidth]{c1/ep}
432 \includegraphics[width=.35\textwidth]{c1/cg}
433 \includegraphics[width=.35\textwidth]{c1/bt}}
435 \centering {\includegraphics[width=.55\textwidth]{c1/results.pdf}}
443 \begin{frame}{Results comparison}
444 \begin{block}{\small Rauber and Rünger's optimal scaling factor}
445 $S_{opt} = \sqrt[3]{\frac{2}{N} \cdot \frac{P_{dyn}}{P_{static}} \cdot
446 \left( 1 + \sum_{i=2}^{N} \frac{T_i^3}{T_1^3}\right) } $
451 %\includegraphics[width=.33\textwidth]{c1/c1.pdf}
453 %\includegraphics[width=.33\textwidth]{c1/c2.pdf}}
456 \includegraphics[width=.55\textwidth]{c1/compare-c.pdf}}
464 \begin{frame}{The proposed new energy model}
467 \animategraphics[autopause,controls,scale=0.28,buttonsize=0.2cm]{10}{homo-model/a-}{0}{356}
468 %\includegraphics[width=0.6\textwidth]{homo-model/a-356}
476 \begin{frame}{\large Comparing the new model with Rauber's model }
479 \includegraphics[width=.45\textwidth]{c1/energy_con}
481 \includegraphics[width=.5\textwidth]{c1/compare-scales}
487 % \begin{frame}{Summary}
488 % \begin{femtoBlock}{}
491 %\item We have presented a new online scaling factor selection method that \textcolor{blue}{optimizes simultaneously the energy and performance}.\medskip
492 % \item It predicts \textcolor{blue}{ the energy consumption and the performance} of the parallel applications. \medskip
493 %\item Our algorithm \textcolor{blue}{saves more energy} when the communication and the other slacks times are big. \medskip
494 %\item It gives the \textcolor{blue}{best trade-off between energy reduction and
495 % performance}. \medskip
496 %\item Our method \ \textcolor{blue}{outperforms Rauber and Rünger's method} in terms of energy-performance ratio.
497 %\item The proposed new energy model is \textcolor{blue}{more accurate} then Rauber energy model.
509 \begin{frame}{The second contribution}
511 \section{\small {Energy optimization of a heterogeneous platform}}
515 \bf \Large \textcolor{blue}{Energy optimization of a parallel application with iterations running over a Heterogeneous platform}
525 \begin{frame}{Objectives}
526 \begin{femtoBlock}{} \vspace{-12 mm}
527 \begin{itemize} \small
528 \item Proposing \textcolor{blue}{new energy and performance models} for message passing applications with iterations running
529 over a heterogeneous platform (cluster or Grid). \medskip
530 \item Studying the effect of the scaling factor $S$ on both the \textcolor{blue}{energy consumption and the performance} of
531 message passing iterative applications. \medskip
533 \item Computing the vector of scaling factors ($S_1, S_2, ..., S_n$) producing \textcolor{blue} {the optimal trade-off} between
534 the energy consumption and the performance.
545 \begin{frame}{The execution time model}
549 \includegraphics[scale=0.5]{c2/commtasks}
555 \begin{block}{\small The execution time prediction model}
558 \small\textcolor{red}{ T_{new}} = \textcolor{blue}{\max_{i=1,2,\dots,N} ({TcpOld_i} \cdot S_{i}) + \min_{i=1,2,\dots,N} (Tcm_i)}
561 \small Where: $ \textcolor{red}{Tcm} = \textcolor{blue}{communication~times + slack~times}$
568 \begin{frame}{The energy consumption model}
569 The overall energy consumption of a message passing synchronous application executed over
570 a heterogeneous platform can be computed as follows:
573 \textcolor{red}{E} = \textcolor{blue}{\sum_{i=1}^{N} {(S_i^{-2} \cdot Pd_i \cdot Tcp_i)}} + {} \\
574 \textcolor{blue}{\sum_{i=1}^{N} (Ps_i \cdot (\max_{i=1,2,\dots,N} (Tcp_i \cdot S_{i}) + {\min_{i=1,2,\dots,N} (Tcm_i))}}
578 \textcolor{blue}{N} : is the number of nodes.
585 \begin{frame}{The energy model example for heter. cluster}
588 \animategraphics[autopause,controls,scale=0.28,buttonsize=0.2cm]{10}{heter-model/a-}{0}{272}
589 %\includegraphics[width=0.6\textwidth]{heter-model/a-272}
599 %\begin{frame}{The trade-off between energy and performance}
602 % \centering{ \includegraphics[width=.4\textwidth]{c2/heter}}
605 % \textcolor{red}{\underline{Step1}}: computing the normalized energy \textcolor{blue}%{$E_{norm} = \frac{E_{reduced}}
607 % \textcolor{red}{\underline{Step2}}: computing the normalized performance \textcolor{blue}{$P_{norm} = \frac{T_{Max}}{T_{new}}$}.
609 % \begin{block}{\small The tradeoff model}
612 % \textcolor{red}{MaxDist} =
613 % \mathop {\max_{i=1,\dots F}}_{j=1,\dots,N}
614 % (\overbrace{P_{norm}(S_{ij})}^{\text{\textcolor{blue}{Maximize}}} -
615 % \overbrace{E_{norm}(S_{ij})}^{\text{\textcolor{blue}{Minimize}}} )
624 \begin{frame}{The scaling algorithm for heter. cluster}
627 \includegraphics[width=.52\textwidth]{algo-heter}
634 \begin{frame}{The scaling algorithm example}
639 \animategraphics[autopause,controls,scale=0.28,buttonsize=0.2cm]{10}{dvfs-heter/a-}{0}{650}
640 % \includegraphics[width=0.6\textwidth]{dvfs-heter/a-650}
650 \begin{frame}{Experiments over a heterogeneous cluster }
653 \item The experiments were executed on the simulator SimGrid/SMPI v3.10.\medskip
654 \item The scaling algorithm was applied to the NAS parallel benchmarks class C.\medskip
655 \item Four types of processors with different computing powers were used.\medskip
656 \item The benchmarks were executed with different number of nodes ranging from 4 to 144 nodes.\medskip
657 \item It was assumed that the total power consumption of the CPU consist of 80\% dynamic power and 20\% static power.
668 \begin{frame}{The experimental results}
672 \includegraphics[width=0.8\textwidth]{c2/energy_saving.pdf}
674 \textcolor{blue}{On average, it reduces the energy consumption by \textcolor{red}{29\%}
675 for the class C of the NAS Benchmarks executed over 8 nodes}
685 \begin{frame}{The experimental results}
690 \includegraphics[width=.8\textwidth]{c2/perf_degra.pdf}
692 \textcolor{blue}{On average, it degrades by \textcolor{red}{3.8\%} the performance
693 of NAS Benchmarks class C executed over 8 nodes}
702 \begin{frame}{The results of the three power scenarios}
706 \includegraphics[width=.55\textwidth]{c2/three_power.pdf}
708 \includegraphics[width=.55\textwidth]{c2/three_scenarios.pdf}
717 \begin{frame}{Comparing the objective function to EDP}
719 EDP is the products between the energy consumption and the delay.
723 \includegraphics[width=.55\textwidth]{c2/avg_compare.pdf}
725 \includegraphics[width=.55\textwidth]{c2/compare_with_EDP.pdf}
735 %\begin{frame}{Energy optimization of grid platform}
738 % \includegraphics[width=.6\textwidth]{c2/grid5000.pdf}
740 % \small 10 sites distributed over France and Luxembourg
748 \begin{frame}{The grid architecture}
750 \includegraphics[width=.8\textwidth]{c2/init_freq.pdf}
753 %\begin{frame}{Performance, Energy and trade-off models} \small
754 %\begin{block}{\small The performance model of grid}
757 %\Tnew = \mathop{\max_{i=1,\dots N}}_{j=1,\dots,M_i}({\TcpOld[ij]} \cdot S_{ij})
758 % +\mathop{\min_{j=1,\dots,M_h}} (\Tcm[hj])
763 %\begin{block}{\small The energy model of grid}\small
766 %E = \sum_{i=1}^{N} \sum_{i=1}^{M_i} {(S_{ij}^{-2} \cdot \Pd[ij] \cdot \Tcp[ij])} +
767 % \sum_{i=1}^{N} \sum_{j=1}^{M_i} (\Ps[ij] \cdot \Tnew)
771 %\begin{block}{\small The trade-off model of grid}
776 %\mathop{ \mathop{\max_{i=1,\dots N}}_{j=1,\dots,M_i}}_{k=1,\dots,F_j}
777 % (\overbrace{\Pnorm(S_{ijk})}^{\text{Maximize}} -
778 % \overbrace{\Enorm(S_{ijk})}^{\text{Minimize}} )
790 \begin{frame}{Experiments over Grid'5000}
792 \textcolor{blue}{The experiments were conducted using three
793 clusters distributed over one or two sites.}
796 \includegraphics[width=.5\textwidth]{c2/grid5000-2.pdf}
799 \textcolor{blue}{Grid'5000 power measurement tools were used.}
802 \includegraphics[width=.5\textwidth]{c2/power_consumption.pdf}
814 \begin{frame}{Experiments over Grid'5000}
816 \begin{minipage}{0.4\textwidth}
817 %\textcolor{blue}{Execution the NAS class D on 16 nodes saves the energy by
818 %\textcolor{red}{30\%}}
819 \small \textcolor{blue}{The average energy saving = \textcolor{red}{30\%}}
821 \begin{minipage}{0.55\textwidth}
823 \includegraphics[width=0.83 \textwidth]{c2/eng_s.eps}
827 \begin{minipage}{0.4\textwidth}
828 %\textcolor{blue}{Execution the NAS class D on 16 nodes degrades the
829 %performance by \textcolor{red}{3.2\%}}
830 \small \textcolor{blue}{The average performance degradation = \textcolor{red}{3.2\%}}
832 \begin{minipage}{0.55\textwidth}
834 \includegraphics[width=.83\textwidth]{c2/per_d.eps}
844 \begin{frame}{Experiments over Grid'5000}
845 \textcolor{blue}{One core and Multi-cores per node results:}
848 \includegraphics[width=.48\textwidth]{c2/eng_s_mc.eps}
850 \includegraphics[width=.48\textwidth]{c2/per_d_mc.eps}
853 \centering \small \textcolor{blue}{Using multi-cores per node scenario decreases the computations to communications ratio}.
858 %\begin{frame}{Summary}
861 % \item Two scaling algorithm were applies to \textcolor{blue}{heterogeneous %cluster} and \textcolor{blue}{grid}.
862 % \item A new \textcolor{blue}{energy} and \textcolor{blue}{performance} models were proposed.
863 % \item The experimental results ere conducted over \textcolor{blue}{SimGrid} simulators and real
864 %test-bed \textcolor{blue}{Grid'5000}.
866 %\item The algorithm saves the energy by \textcolor{blue}{29\%} and only
867 % degrades the performance by \textcolor{blue}{3.8\%} for simulated heterogeneous
870 %\item The algorithm saves the energy by \textcolor{blue}{30\%} and only
871 % degrades the performance by \textcolor{blue}{3.2\%} for Grid'5000 results.
873 % \item The proposed method \textcolor{blue}{outperforms the EDP method} in terms of energy-performance ratio.
881 \begin{frame}{The third contribution}
882 \section{\small {Energy optimization of asynchronous applications}}
884 \bf \Large \textcolor{blue}{Energy optimization of asynchronous iterative message passing applications}
893 \begin{frame}{Problem definition}\vspace{0.8 mm}
894 \textcolor{blue}{The execution of a synchronous parallel iterative application over a grid }
897 \animategraphics[autopause,controls,scale=0.25,buttonsize=0.2cm]{10}{syn/a-}{0}{503}
898 %\includegraphics[width=0.6\textwidth]{syn/a-503}
907 \begin{frame}{Problem definition}\vspace{0.8 mm}
908 \textcolor{blue}{The execution of an asynchronous parallel iterative application over a grid }
911 \animategraphics[autopause,controls,scale=0.25,buttonsize=0.2cm]{10}{asyn/a-}{0}{440}
912 %\includegraphics[width=0.6\textwidth]{asyn/a-440}
921 \begin{frame}{Solution}\vspace{0.8mm}
922 \textcolor{blue}{Using asynchronous communications with DVFS }
925 \animategraphics[autopause,controls,scale=0.25,buttonsize=0.2cm]{10}{asyn+dvfs/a-}{0}{314}
926 %\includegraphics[width=0.6\textwidth]{asyn+dvfs/a-314}
936 %\begin{frame}{The performance models}
938 %\begin{block}{\small The performance model of Asynch. Applications}\small
940 %\label{eq:asyn_time}
941 %\Tnew = \frac{\sum_{i=1}^{N} \sum_{j=1}^{M_i}({\TcpOld[ij]} \cdot S_{ij})} {N \cdot M_i }
946 %\begin{block}{\small The performance model of Hybrid Applications}\small
948 %\label{eq:asyn_perf}
949 %\Tnew = \frac{\sum_{i=1}^{N} (\max_{j=1,\dots, M_i} ({\TcpOld[ij]} \cdot S_{ij}) +
950 %\min_{j=1,\dots,M_i} ({\Ltcm[ij]}))}{N}
962 %\begin{frame}{The energy consumption models}
964 %\begin{block}{\small The energy model of Asynch. Applications}\small
966 %\label{eq:asyn_energy1}
967 % E = \sum_{i=1}^{N} \sum_{j=1}^{M_i} {(S_{ij}^{-2} \cdot \Tcp[ij] \cdot (\Pd[ij]+\Ps[ij]) )}
972 %\begin{block}{\small The energy model of Hybrid Applications}\small
974 %\label{eq:asyn_energy}
975 %E = \sum_{i=1}^{N} \sum_{j=1}^{M_i} {(S_{ij}^{-2} \cdot \Pd[ij] \cdot \Tcp[ij])} + \sum_{i=1}^{N} \sum_{j=1}^{M_i} (\Ps[ij] \cdot \\
976 % ( \mathop{\max_{j=1,\dots,M_i}} ({\Tcp[ij]} \cdot S_{ij}) + \mathop{\min_{j=1,\dots,M_i}} ({\Ltcm[ij]})))
986 \begin{frame}{The performance and the energy models }
989 \includegraphics[width=0.9\textwidth]{syn-vs-asyn.pdf}
999 \begin{frame}{The scaling algorithm for Asynch. applications}
1002 \includegraphics[width=0.55\textwidth]{algo-hybrid.pdf}
1007 %%%%%%%%%%%%%%%%%%%%
1009 %%%%%%%%%%%%%%%%%%%%
1010 \begin{frame}{The experiments}
1015 \item The architecture of the grid:
1017 \includegraphics[width=0.5\textwidth]{c3/hybrid-model.pdf}
1021 \item Applying the proposed algorithm to the asynchronous iterative message passing multi-splitting method.
1022 \item Evaluating the application over the simulator and Grid'5000.
1028 %%%%%%%%%%%%%%%%%%%%
1030 %%%%%%%%%%%%%%%%%%%%
1031 \begin{frame}{The simulation results}
1032 \centering \small \textcolor{blue}{The best scenario in terms of energy and performance is the Async. MS with Sync. DVFS}
1035 \includegraphics[scale=0.42]{c3/energy_saving.eps}
1037 \centering The average energy saving = \textcolor{red}{22\%}
1042 %%%%%%%%%%%%%%%%%%%%
1044 %%%%%%%%%%%%%%%%%%%%
1045 \begin{frame}{The simulation results}
1048 \includegraphics[scale=0.42]{c3/perf_degra.eps}
1050 \centering The average speed-up = \textcolor{red}{5.72\%}
1055 %%%%%%%%%%%%%%%%%%%%
1057 %%%%%%%%%%%%%%%%%%%%
1058 \begin{frame}{The Grid'5000 results}
1063 \includegraphics[width=0.53\textwidth]{c3/energy-s-compare.eps}
1064 \includegraphics[width=0.53\textwidth]{c3/perf-deg-compare.eps}
1067 \centering \footnotesize
1068 The average energy saving = \textcolor{red}{26.93\%}, the average speed-up = \textcolor{red}{21.48\%}
1072 %%%%%%%%%%%%%%%%%%%%
1074 %%%%%%%%%%%%%%%%%%%%
1075 \begin{frame}{The comparison results}
1077 \includegraphics[width=.5\textwidth]{c3/compare.eps}
1079 \includegraphics[width=.5\textwidth]{c3/compare_scales.eps}
1085 %%%%%%%%%%%%%%%%%%%%
1087 %%%%%%%%%%%%%%%%%%%%
1088 \begin{frame}{Conclusions}
1089 \section{Conclusions and Perspectives}
1092 \small \barrow Three \textcolor{blue}{ new energy consumption and performance} models were proposed for synchronous or asynchronous parallel applications with iterations running over
1093 \textcolor{blue}{homogeneous and heterogeneous clusters or grids}.
1097 \small \barrow \textcolor{blue}{A new objective function} to optimize both the energy consumption and the performance was proposed.
1099 \small \barrow \textcolor{blue}{New online frequency selecting algorithms} for clusters and grids were developed.
1101 \small \barrow The proposed algorithms were applied to the \textcolor{blue}{NAS parallel benchmarks} and \textcolor{blue}{the
1102 Multi-splitting} method.
1104 \small \barrow The proposed algorithms were evaluated over the \textcolor{blue}{SimGrid simulator} and over the \textcolor{blue}{Grid'5000 testbed}.
1106 \small \barrow All the proposed methods were compared to either \textcolor{blue}{Rauber and Rünger's method} or to the \textcolor{blue}{EDP objective function}.
1114 %%%%%%%%%%%%%%%%%%%%
1116 %%%%%%%%%%%%%%%%%%%%
1117 \begin{frame}{Publications}
1119 \begin{block}{\small Journal Articles }\scriptsize
1120 \begin{enumerate}[$\lbrack$1$\rbrack$]
1122 \item Ahmed Fanfakh, Jean-Claude Charr, Raphaël Couturier, Arnaud Giersch. Optimizing the energy consumption of message passing applications with iterations executed over grids. \textit{Journal of Computational
1125 \item Ahmed Fanfakh, Jean-Claude Charr, Raphaël Couturier, Arnaud Giersch. Energy Consumption Reduction for
1126 Asynchronous Message Passing Applications. \textit{Journal of Supercomputing}, 2016, (Submitted)
1132 \begin{block}{\small Conference Articles }\scriptsize
1134 \begin{enumerate}[$\lbrack$1$\rbrack$]
1136 \item Jean-Claude Charr, Raphaël Couturier, Ahmed Fanfakh, Arnaud Giersch. Dynamic Frequency Scaling for
1137 Energy Consumption Reduction in Distributed MPI Programs. \textit{ISPA 2014}, pp.
1138 225-230. IEEE Computer Society, Milan, Italy (2014).
1140 \item Jean-Claude Charr, Raphaël Couturier, Ahmed Fanfakh, Arnaud Giersch. Energy Consumption Reduction
1141 with DVFS for Message Passing Iterative Applications on Heterogeneous Architectures.
1142 \textit{The $16^{th}$ PDSEC}. pp. 922-931. IEEE Computer Society, INDIA (2015).
1144 \item Ahmed Fanfakh, Jean-Claude Charr, Raphaël Couturier, Arnaud Giersch. CPUs Energy Consumption
1145 Reduction for Asynchronous Parallel Methods Running over Grids. \textit{The $19^{th}$ CSE conference}. IEEE Computer Society,
1154 %%%%%%%%%%%%%%%%%%%%
1156 %%%%%%%%%%%%%%%%%%%%
1157 \begin{frame}{Perspectives}
1161 \small \barrow The proposed algorithms should take into consideration the
1162 \textcolor{blue}{variability between some iterations}.
1164 \small \barrow The proposed algorithms should be applied to \textcolor{blue}{other message passing methods with iterations} in order to see how they adapt to the characteristics of these methods.
1166 \small \barrow The proposed algorithms for heterogeneous platforms should be applied to heterogeneous platforms composed of \textcolor{blue}{CPUs and GPUs}.
1168 \small \barrow Comparing the results returned by the energy models to the values given by \textcolor{blue}{real instruments that measure the energy consumptions} of CPUs during the execution time.
1173 %%%%%%%%%%%%%%%%%%%%
1175 %%%%%%%%%%%%%%%%%%%%
1176 \begin{frame}{Fin} \vspace{-10 mm}
1178 \centering \Large \textcolor{blue}{Thank you for your attention}
1181 \centering \textcolor{blue}{ {\Large Questions?}}