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Definition of parallel computing
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Execution of synchronous parallel tasks
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Synchronous and asynchronous iterative methods
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Approaches to get more computing power

1) Increase the frequency of a
processor.
(limited due to overheating)

2) Increase the number of com-
puting units.
The supercomputer Tianhe-2
has more than 3 million cores
and consumes around 17.8
megawatts.
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Techniques for energy consumption reduction
1) Switch-off idle nodes method
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Techniques for energy consumption reduction
2) Dynamic Voltage and Frequency Scaling (DVFS)
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Motivations
Why we used the DVFS method:

• The CPU is the component
that consumes the highest
amount of energy in a node 1.

CPU
PCI SLOTS
MEMORY
MOTHERBOARD
DISK
FAN

• DVFS reduces the energy consumption while keeping all the
nodes working.

• It has a very small overhead compared to switching-off the idle
nodes.

Challenge and Objective
Challenge: DVFS is used to reduce the energy consumption, but it
also degrades the performance of the CPU.
Objective: Applying the DVFS to minimize the energy consumption
while maintaining the performance of the parallel application.
1 Fan, X., Weber, W., and Barroso, L. A. 2007. Power provisioning for a warehouse-sized computer.
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The first contribution

Energy optimization of a parallel application
with iterations running over a homogeneous

platform
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Objectives

• Studying the effect of the frequency scaling on the energy con-
sumption and performance of parallel applications with itera-
tions.

• Discovering the energy-performance trade-off relation when
changing the frequency of the processor.

• Proposing an algorithm for selecting the scaling factor that pro-
duces the good trade-off between the energy consumption and
the performance.

• Comparing the proposed algorithm to existing methods.
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Performance evaluation of MPI programs
The frequency scaling factor is the ratio between the maximum and
the new frequency, S = Fmax

Fnew
.

Execution time prediction model

Tnew = TMaxCompOld · S + TMinCommOld
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The maximum normalized error for CG=0.0073 (the smallest) and
LU=0.031 (the worst).
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Energy model for a homogeneous platform

The power consumed by a processor is divided into two power
metrics: the dynamic (Pd ) and the static (Ps) powers.

Pd = α · CL · V 2 · F (1)

Where:
α: switching activity. CL: load capacitance [F].
V : the supply voltage [V]. F : operational frequency [Hz].

Ps = V · Ntrans · Kdesign · ILeak (2)

Where:
V : the supply voltage [V]. Ntrans : number of transistors.
Kdesign: design dependent parameter. Ileak : technology dependent parameter [A].
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Energy model for a homogeneous platform
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Performance and energy reduction trade-off
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(d) Converted relation.

Where: Performance = execution time−1

Our objective function

MaxDist = maxj=1,2,...,F (

Maximize︷ ︸︸ ︷
PNorm(Sj)−

Minimize︷ ︸︸ ︷
ENorm(Sj))
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Scaling factor selection algorithm
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Experiment over SimGrid

• The experiments were executed on the simulator SimGrid/SMPI
v3.10.

• The proposed algorithm was applied to the NAS parallel
benchmarks.

• Each node in the cluster has 18 frequency values from 2.5GHz
to 800MHz.

• The proposed algorithm was evaluated over the A, B and C
classes of the benchmarks using 4, 8 or 9 and 16 nodes
respectively.

• Pd = 20W , Ps = 4W .
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Experimental results
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Results comparison
Rauber and Rünger’s scaling factor 2
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2 Thomas Rauber and Gudula Rünger. Analytical modeling and simulation of the energy consumption of
independent tasks. In Proceedings of the Winter Simulation Conference, 2012.

19 / 41



The second contribution

Energy optimization of a parallel application
with iterations running over a

Heterogeneous platform
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Objectives

• Proposing new energy and performance models for message
passing applications with iterations running over a
heterogeneous platform (cluster or Grid).

• Studying the effect of the scaling factor S on both the energy
consumption and the performance of message passing iterative
applications.

• Computing the vector of scaling factors (S1,S2, ...,Sn) producing
the good trade-off between the energy consumption and the
performance.
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The execution time model
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The execution time prediction model

Tnew = max
i=1,2,...,N

(TcpOldi · Si) + min
i=1,2,...,N

(Tcmi) (3)

Where: Tcm = communication times + slack times
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The energy model for heterogeneous cluster
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The scaling algorithm for heter. cluster
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Experiments over Grid’5000
The experiments were conducted using three clusters
distributed over one or two sites.
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Experiments over Grid’5000

The average energy saving
= 30%
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The results of the three power scenarios
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One core and Multi-cores per node results
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Using multi-cores per node scenario decreases the computations to
communications ratio.
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Comparing the objective function to EDP
EDP is the product between the energy consumption and the
delay 3.
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3 Spiliopoulos et al, Green governors: A framework for continuously adaptive dvfs, in International Green Computing
Conference and Workshops (IGCC), 2011.
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The third contribution

Energy optimization of asynchronous
iterative message passing applications
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Problem definition
The execution of a synchronous parallel iterative application
over a grid
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Problem definition
The execution of an asynchronous parallel iterative application
over a grid
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Solution
Using asynchronous communications with DVFS
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The performance and the energy models
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The experiments

• The architecture of the grid:

High speed local network

Long distance external netwok

Heterogenous  computing  nodes

Cluster 1 Cluster 2

Cluster 3Cluster 4

Synchronous 
communications

Asynchronous or
Synchronous communications

• Applying the proposed algorithm to the asynchronous iterative
message passing multi-splitting method.

• Evaluating the application over the simulator and Grid’5000.
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The Grid’5000 results

 0

 5

 10

 15

 20

 25

 30

Asyn.M
S.Syn.D

VFS

Syn.M
S.Syn.D

VFS

Syn.M
S.Asyn.D

VFS

Asyn.M
S.Asyn.D

VFS

E
n
e
rg

y
 s

a
v
in

g
 %

 

Size 400
Size 500

−30

−25

−20

−15

−10

−5

 0

 5

 10

 15

Asyn.M
S.Syn.D

VFS

Syn.M
S.Syn.D

VFS

Syn.M
S.Asyn.D

VFS

Asyn.M
S.Asyn.D

VFS

P
e
rf

o
rm

a
n
c
e
 d

e
g
ra

d
a
ti
o
n
 %

 

Size 400
Size 500

The average energy saving = 26.93%, the average speed-up = 21.48%
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The comparison results
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Conclusions

ä Three new energy consumption and performance models were
proposed for synchronous or asynchronous parallel applications
with iterations running over homogeneous and heterogeneous
clusters or grids.

ä A new objective function to optimize both the energy
consumption and the performance was proposed.

ä New online frequency selecting algorithms for clusters and grids
were developed.

ä The proposed algorithms were applied to the NAS parallel
benchmarks and the Multi-splitting method.

ä The proposed algorithms were evaluated over the SimGrid
simulator and over the Grid’5000 testbed.

ä All the proposed methods were compared to either Rauber and
Rünger’s method or to the EDP objective function.

38 / 41



Publications
Journal Articles
[1] Ahmed Fanfakh, Jean-Claude Charr, Raphaël Couturier, Arnaud Giersch.

Optimizing the energy consumption of message passing applications with
iterations executed over grids. Journal of Computational Science, 2016.

[2] Ahmed Fanfakh, Jean-Claude Charr, Raphaël Couturier, Arnaud Giersch. Energy
Consumption Reduction for Asynchronous Message Passing Applications. Journal
of Supercomputing, 2016, (Accepted with minor revisions)

Conference Articles
[1] Jean-Claude Charr, Raphaël Couturier, Ahmed Fanfakh, Arnaud Giersch. Dynamic

Frequency Scaling for Energy Consumption Reduction in Distributed MPI
Programs. ISPA 2014, pp. 225-230. IEEE Computer Society, Milan, Italy (2014).

[2] Jean-Claude Charr, Raphaël Couturier, Ahmed Fanfakh, Arnaud Giersch. Energy
Consumption Reduction with DVFS for Message Passing Iterative Applications on
Heterogeneous Architectures. The 16th PDSEC. pp. 922-931. IEEE Computer
Society, INDIA (2015).

[3] Ahmed Fanfakh, Jean-Claude Charr, Raphaël Couturier, Arnaud Giersch. CPUs
Energy Consumption Reduction for Asynchronous Parallel Methods Running over
Grids. The 19th CSE conference. IEEE Computer Society, Paris (2016).

39 / 41



Perspectives

ä The proposed algorithms should take into consideration the
variability between some iterations.

ä The proposed algorithms should be applied to other message
passing methods with iterations in order to see how they adapt
to the characteristics of these methods.

ä The proposed algorithms for heterogeneous platforms should be
applied to heterogeneous platforms composed of CPUs and
GPUs.

ä Comparing the results returned by the energy models to the
values given by real instruments that measure the energy
consumptions of CPUs during the execution time.

ä Considering the power consumed by the other devices in the
node such as the memory and the hard drive in the energy
consumption model.
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Fin

Thank you for your attention

Questions?
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