

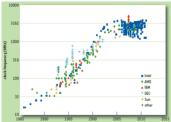
Energy Consumption Optimization of Parallel Applications with Iterations using CPU Frequency Scaling

PhD Dissertation Defense

Ahmed Badri Muslim Fanfakh

Under Supervision: Raphaël COUTURIER and Jean-Claude CHARR University of Bourgogne Franche-Comté - FEMTO-ST - DISC Dept. -AND Team **17 October 2016**

- 1. Introduction and Problem definition
- 2. Motivations
- 3. Energy optimization of homogeneous platform
- 4. Energy optimization of heterogeneous platform
- 5. Energy optimization of asynchronous applications
- 6. Conclusions and Perspectives


Introduction and problem definition

Approaches to increase the computing power of the parallel platform :

1) Increasing the frequency of a processor.

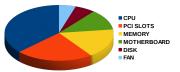
2) Increasing the number of nodes.

Recently, Tianhe-2 supercomputer had more than 3 million cores while consuming around 17.8 megawatts.

Introduction and problem definition

Techniques for energy consumption reduction 1) Switch-off idle nodes method

Techniques for energy consumption reduction


2) Dynamic voltage and frequency Scaling (DVFS)

Motivations

Why we used DVFS method:

 The biggest power consumption is consumed by the processor ¹.

- It uses to reduce the energy consumption while keeping all the nodes working, thus it is more adapted to parallel computing.
- It has a very small overhead compared to switching-off the idle nodes method.

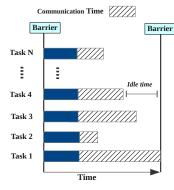
Challenge and Objective

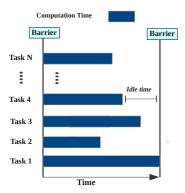
Challenge: DVFS is used to reduce the energy consumption, but it degrades the performance simultaneously.

Objective: Applying the DVFS to minimize the energy consumption while maintaining the performance of the parallel application.

¹ Fan, X., Weber, W., and Barroso, L. A. 2007. Power provisioning for a warehouse-sized computer.

Energy optimization of a parallel application with iterations running over a homogeneous platform




- Study the effect of the scaling factor S on energy consumption and performance of parallel applications with iterations such as NAS Benchmarks.
- Discovering the **energy-performance trade-off relation** when changing the frequency of the processor.
- Proposing an algorithm for selecting the scaling factor *S* producing **the optimal trade-off** between the energy consumption and the performance.
- Comparing the proposed algorithm to existing methods.

Execution of synchronous parallel tasks

(a) Sync. imbalanced communications

(b) Sync. imbalanced computations

The power consumed by a processor divided into two power metrics: the dynamic (P_d) and static (P_s) power.

$$P_d = \alpha \cdot CL \cdot V^2 \cdot F \tag{1}$$

Where:

 α : switching activity *V* the supply voltage *CL*: load capacitance *F*: operational frequency

$$P_{s} = V \cdot N_{trans} \cdot K_{design} \cdot I_{Leak}$$

(2)

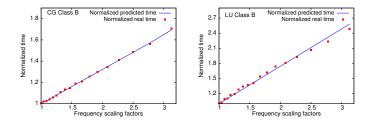
Where:

V: the supply voltage. K_{design} : design dependent parameter. N_{trans} : number of transistors. I_{leak} : technology dependent parameter.

The frequency scaling factor is the ratio between the maximum and the new frequency, $S = \frac{F_{max}}{F_{new}}$.

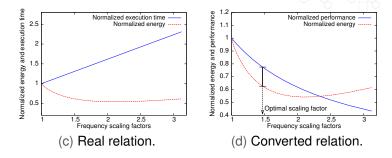
Rauber and Rünger's energy model

$$E = P_d \cdot S_1^{-2} \cdot \left(T_1 + \sum_{i=2}^N \frac{T_i^3}{T_1^2}\right) + P_s \cdot S_1 \cdot T_1 \cdot N$$


- S_1 : the max. scaling factor
- P_d: the dynamic power
- Ps: the static power
- T_I : the time of the slower task
- T_i : the time of the other tasks
- N: the number of nodes

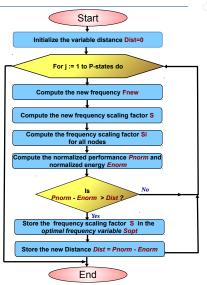
Performance evaluation of MPI programs

Execution time prediction model


 $T_{new} = T_{MaxCompOld} \cdot S + T_{MinCommOld}$

The maximum normalized error for CG=0.0073 (the smallest) and LU=0.031 (the worst).

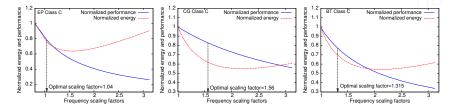
Performance and energy reduction trade-off

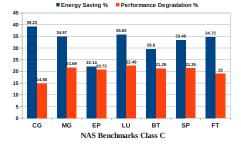


Where: *Performance* = *execution time*⁻¹

Scaling factor selection algorithm

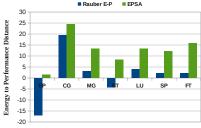
Scaling algorithm example




- The experiments were executed on the simulator SimGrid/SMPI v3.10.
- The proposed algorithm was applied to the NAS parallel benchmarks.
- Each node in the cluster has 18 frequency values from **2.5***GHz* to **800***MHz*.
- The proposed algorithm was evaluated over the A, B, C classes of the benchmarks using 4, 8 or 9 and 16 nodes respectively.

•
$$P_d = 20W, P_s = 4W.$$

Experimental results

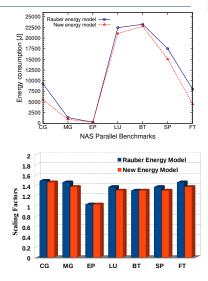


Results comparison

Rauber and Rünger's optimal scaling factor

$$S_{opt} = \sqrt[3]{rac{2}{N}} \cdot rac{P_{dyn}}{P_{static}} \cdot \left(1 + \sum_{i=2}^{N} rac{T_i^3}{T_1^3}
ight)$$

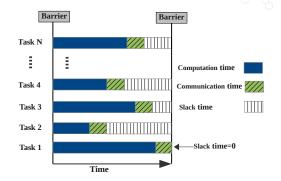
Comparing our method with Rauber and Rünger method for NAS benchmarks class C



The proposed new energy model

Comparing the new model with Rauber model

Energy optimization of a parallel application with iterations running over a Heterogeneous platform



- Proposing new energy and performance models for message passing applications with iterations running over a heterogeneous platform (cluster and Grid).
- Studying the effect of the scaling factor *S* on both the energy consumption and the performance of message passing iterative applications.
- Computing the vector of scaling factors (*S*₁, *S*₂, ..., *S_n*) producing the optimal trade-off between the energy consumption and the performance.

The execution time model

The execution time prediction model

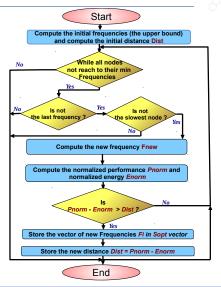
$$T_{new} = \max_{i=1,2,\dots,N} (TcpOld_i \cdot S_i) + \min_{i=1,2,\dots,N} (Tcm_i)$$
(3)

Where: *Tcm* = *communication times* + *slack times*

The overall energy consumption of a message passing synchronous application executed over a heterogeneous platform can be computed as follows:

$$E = \sum_{i=1}^{N} (S_i^{-2} \cdot Pd_i \cdot Tcp_i) + \sum_{i=1}^{N} (Ps_i \cdot (\max_{i=1,2,...,N} (Tcp_i \cdot S_i) + \min_{i=1,2,...,N} (Tcm_i))$$
(4)

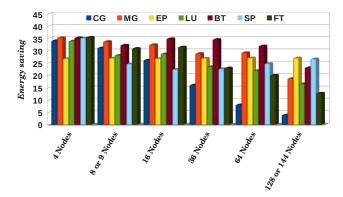
where:


N : is the number of nodes.

The energy model example for heter. cluster

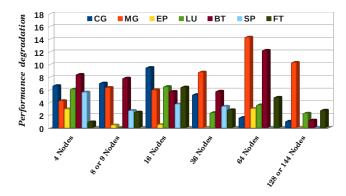
The scaling algorithm for heter. cluster

The scaling algorithm example

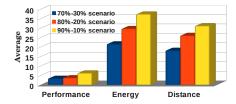


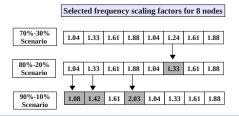
Experiments over a heterogeneous cluster

- The experiments executed on the simulator SimGrid/SMPI v3.10.
- The scaling algorithm was applied to the NAS parallel benchmarks class C.
- Four types of processors with different computing powers were used.
- We ran the benchmarks on different number of nodes ranging from 4 to 144 nodes.
- The total power consumption of the chosen CPUs assumed to be composed of 80% for the dynamic power and 20% for the static power.


The experimental results

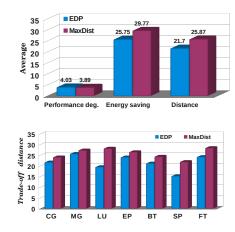
On average, it reduces the energy consumption by 29% for the class C of the NAS Benchmarks executed over 8 nodes

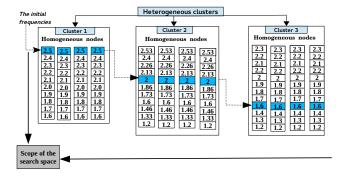

The experimental results



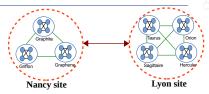
On average, it degrades by 3.8% the performance of NAS Benchmarks class C executed over 8 nodes

The results of the three power scenarios

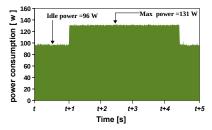



Comparing the objective function to EDP

EDP is the products between the energy consumption and the delay.

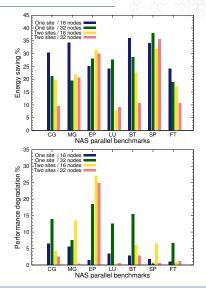


The grid architecture



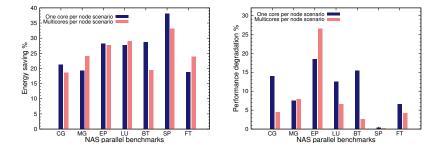
Experiments over Grid'5000

Two experiments were conducted: over one site and two sites each one with three clusters


Grid'5000 power measurement tools were used

Experiments over Grid'5000

The energy saving = 30%


The performance degradation = 3.2%

Experiments over Grid'5000

One core and Multi-cores per node results:

Using multi-cores per node scenario decreases the computations to communications ratio.

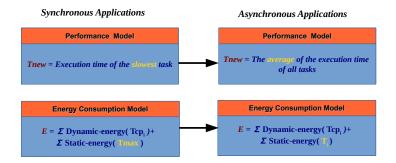
Energy optimization of asynchronous iterative message passing applications

Problem definition

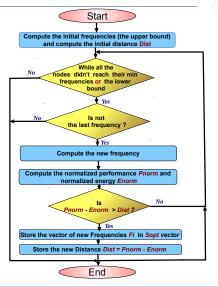
The execution of a synchronous parallel iterative application over a grid

Problem definition

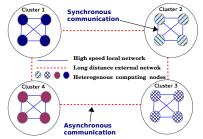
The execution of an asynchronous parallel iterative application over a grid


Solution

Using asynchronous communications with DVFS

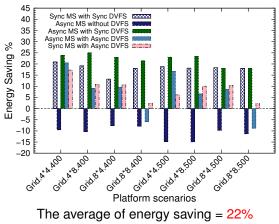


The performance and the energy models

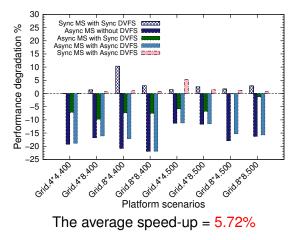

The scaling algorithm for Asynch. applications

The experiments

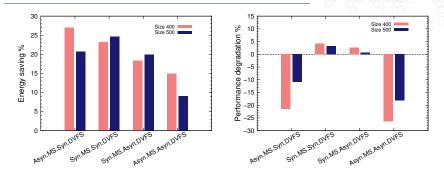
• The architecture of the grid:



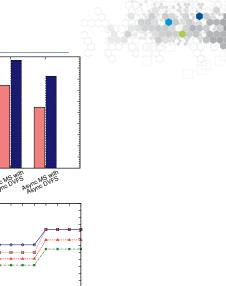
- Applying the proposed algorithm to the asynchronous iterative message passing multi-splitting method.
- Evaluating the application over the simulator and Grid'5000.


The simulation results

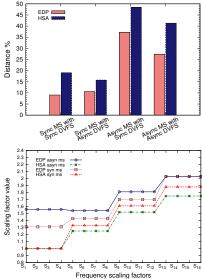
The best scenario in terms of energy and performance is the Async. MS with Sync. DVFS



The simulation results



The Grid'5000 results



The energy saving = 26.93%, the average speed-up = 21.48%

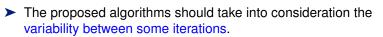
The comparison results

Conclusions

- Three new energy consumption and performance models were proposed for synchronous and asynchronous parallel applications with iterations running over homogeneous and heterogeneous clusters and grids.
- A new objective function to optimize both the energy consumption and the performance was proposed.
- New online frequency selecting algorithms for clusters and grids were developed.
- The proposed algorithms were applied to the NAS parallel benchmarks and the Multi-splitting method.
- The proposed algorithms were evaluated over the SimGrid simulator and over Grid'5000 testbed.
- All the proposed methods were compared to either Rauber and Rünger's method or the EDP objective function.

Publications

Journal Articles


- [1] Ahmed Fanfakh, Jean-Claude Charr, Raphaël Couturier, Arnaud Giersch. Optimizing the energy consumption of message passing applications with iterations executed over grids. *Journal of Computational Science*, 2016.
- [2] Ahmed Fanfakh, Jean-Claude Charr, Raphaël Couturier, Arnaud Giersch. Energy Consumption Reduction for Asynchronous Message Passing Applications. *Journal* of Supercomputing, 2016, (Submitted)

Conference Articles

- Jean-Claude Charr, Raphaël Couturier, Ahmed Fanfakh, Arnaud Giersch. Dynamic Frequency Scaling for Energy Consumption Reduction in Distributed MPI Programs. *ISPA 2014*, pp. 225-230. IEEE Computer Society, Milan, Italy (2014).
- [2] Jean-Claude Charr, Raphaël Couturier, Ahmed Fanfakh, Arnaud Giersch. Energy Consumption Reduction with DVFS for Message Passing Iterative Applications on Heterogeneous Architectures. *The* 16th *PDSEC*. pp. 922-931. IEEE Computer Society, INDIA (2015).
- [3] Ahmed Fanfakh, Jean-Claude Charr, Raphaël Couturier, Arnaud Giersch. CPUs Energy Consumption Reduction for Asynchronous Parallel Methods Running over Grids. *The* 19th CSE conference. IEEE Computer Society, Paris (2016).

- The proposed algorithms should be applied to other message passing methods with iterations in order to see how they adapt to the characteristics of these methods.
- The proposed algorithms for heterogeneous platforms should be applied to heterogeneous platforms composed of CPUs and GPUs.
- Comparing the results returned by the energy models to the values given by real instruments that measure the energy consumptions of CPUs during the execution time.

Thank you for your listening

Questions?

