]> AND Private Git Repository - ThesisAhmed.git/blobdiff - thesis-presentation/AhmedSlides.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
addind the presentation corrections
[ThesisAhmed.git] / thesis-presentation / AhmedSlides.tex
index d4fd8c3611ade4f8fc58d77d8365cff08b1aa6dc..50ac98482737a7fbd70fb12e998681385ae8ead5 100644 (file)
@@ -19,7 +19,7 @@
   \todo[color=red!10,#1]{\sffamily\textbf{JC:} #2}\xspace}
 \definecolor{myblue}{RGB}{0,29,119}
 \newcommand{\Xsub}[2]{{\ensuremath{#1_\mathit{#2}}}}
-
+\usepackage{fixltx2e}
 %% used to put some subscripts lower, and make them more legible
 \newcommand{\fxheight}[1]{\ifx#1\relax\relax\else\rule{0pt}{1.52ex}#1\fi}
 
@@ -75,8 +75,8 @@
 %Iterations using CPU Frequency Scaling} 
 \vspace{2cm}
 
-\title{   \textbf{Energy Consumption Optimization of   Parallel Applications with Iterations   using CPU Frequency Scaling} \\ \vspace{0.2cm} \hspace{1.8cm}\textbf{\textcolor{cyan}{\small PhD Dissertation Defense}}}\vspace{-1cm}
-\author{ \textbf{Ahmed Badri Muslim Fanfakh} \\ \vspace{0.5cm}\small Under Supervision: \textcolor{cyan}{\small  Raphaël COUTURIER and Jean-Claude CHARR} \\\vspace{0.1cm} \textcolor{blue}{ University of Franche-Comté - FEMTO-ST - DISC Dept.  - AND Team} \\ ~~~~~~~~~~~~~~~~~~~~~ \textbf{\textcolor{blue}{ 17 October 2016 }}} 
+\title{   \textbf{Energy Consumption Optimization of   Parallel Applications with Iterations   using CPU Frequency Scaling} \\ \vspace{0.2cm} \hspace{1.8cm}\textbf{\textcolor{cyan}{\small PhD Dissertation Defense}}}\vspace{-0.5cm}
+\author{ \textbf{Ahmed Badri Muslim Fanfakh} \\ \vspace{0.5cm}\small Under the supervision of: \\ \textcolor{cyan}{\small  Raphaël COUTURIER and Jean-Claude CHARR} \\\vspace{0.1cm} \textcolor{blue}{ UBFC - FEMTO-ST - DISC Dept.  - AND Team} \\ ~~~~~~~~~~~~~~~~~~~~~ \textbf{\textcolor{blue}{ 17 October 2016 }}} 
 
 \date{}
 \vspace{-3cm}
 %%%%%%%%%%%%%%%%%%%% 
 \begin{frame}{Introduction and problem definition}
  \section{\small {Introduction and Problem definition}}
-   \bf \textcolor{blue}{Approaches to increase the computing power:}
+   \bf \textcolor{blue}{To get more computing power:}
      \begin{minipage}{0.5\textwidth} 
-      \textcolor{blue}{1)} \small  \bf \textcolor{black}{Increasing the frequency of processor}
+      \textcolor{blue}{1)} \small  \bf \textcolor{black}{Increase the frequency of a  processor.\\ (limited due to overheating)}
     \end{minipage}%
     \begin{minipage}{0.6\textwidth} 
     
     \end{minipage}%
     \vspace{0.2cm}
     \begin{minipage}{0.5\textwidth} 
-     \textcolor{blue}{2)} \small \bf \textcolor{black}{Increasing the number of nodes}        
+     \textcolor{blue}{2)} \small \bf \textcolor{black}{Use more nodes.}
+     
+ \textcolor{black}{The supercomputer Tianhe-2 has more than 3 million cores and consumes around 17.8 megawatts.}  
+          
     \end{minipage}%
     \begin{minipage}{0.6\textwidth} 
     \begin{figure}[h!]
  
  
  
-%%%%%%%%%%%%%%%%%%%%
-%%    SLIDE 04    %%
-%%%%%%%%%%%%%%%%%%%% 
-\begin{frame}{Introduction and problem definition}
- \bf \textcolor{blue}{Processor frequency and its energy consumption}
- \vspace{0.4cm}
-   \begin{minipage}{0.5\textwidth} 
-   \textcolor{blue}{$\blacktriangleright$} 
-  \small  \bf \textcolor{black}{ The power consumption of a processor increases exponentially  when its    
-      frequency is increased}
-    \end{minipage}%
-    \begin{minipage}{0.5\textwidth} 
-    \begin{figure}[h!]
-     \includegraphics[width=0.7\textwidth]{fig/freq-power} 
-    \end{figure}
-    \end{minipage}%
-       
-    \begin{minipage}{0.5\textwidth} 
-     \textcolor{blue}{$\blacktriangleright$} 
-     \small \bf \textcolor{black}{The biggest power consumption is consumed by a processor in the computing node}
-      
-    \end{minipage}%
-    \begin{minipage}{0.6\textwidth} 
-    \begin{figure}[h!]
-     \includegraphics[width=0.9\textwidth]{fig/node-power} 
-    \end{figure}
-    \end{minipage}%
-    
- \end{frame}
+
  %%%%%%%%%%%%%%%%%%%
-%%    SLIDE 05   %%
+%%    SLIDE 04   %%
 %%%%%%%%%%%%%%%%%%%% 
-\begin{frame}{Introduction and problem definition}
+\begin{frame}{Techniques for energy consumption reduction}
  \vspace{0.1cm}
- \bf \textcolor{blue}{Techniques for energy consumption reduction}
  
      \textcolor{blue}{1)} \bf \textcolor{black}{Switch-off idle nodes method}  
     \vspace{-0.9cm}
     \begin{figure}
      \animategraphics[autopause,loop,controls,scale=0.25,buttonsize=0.2cm]{200}{on-off/a-}{0}{69}
+     %\includegraphics[width=0.6\textwidth]{on-off/a-69}
     \end{figure}
  \end{frame}
 
   \textcolor{blue}{2)} \bf \textcolor{black}{Dynamic voltage and frequency Scaling (DVFS)}
      \vspace{-0.5cm}
     \begin{figure}
-     \animategraphics[autopause,controls,scale=0.25,buttonsize=0.2cm]{10}{DVFS-meq/a-}{0}{109}
+    \animategraphics[autopause,controls,scale=0.25,buttonsize=0.2cm]{10}{DVFS-meq/a-}{0}{109}
+     %\includegraphics[width=0.6\textwidth]{DVFS-meq/a-109}
     \end{figure}
     \end{frame}
  
 %%%%%%%%%%%%%%%%%%%%
 %%    SLIDE 07    %%
 %%%%%%%%%%%%%%%%%%%% 
-\begin{frame}{Using the energy reduction method}
-\section{\small {Using the energy reduction method}}
-\begin{block}{\textcolor{white}{Why we used DVFS method:}}
-\begin{itemize}
-               \item \textcolor{black}{It used to reduce the energy while keeping all node working, thus  it is more conventional with parallel computing.}
-               \item \textcolor{black}{It has a very small overhead compared to switch-off idle nodes method.}
+\begin{frame}{Motivations}
+\vspace{0.05cm}
+\section{\small {Motivations}}
+\textcolor{blue}{Why we used the DVFS method:}
+\vspace{-0.49cm}
+\begin{minipage}{0.5\textwidth} 
+    \vspace{-0.49cm} 
+      \begin{itemize} 
+       \item  \small \textcolor{black}{ The CPU is the component that consumes the  highest amount of energy in a node \textsuperscript{1}. }
+               
         \end{itemize}
-\end{block}
 
- \vspace{0.1cm}
+    \end{minipage}%
+    \begin{minipage}{0.5\textwidth}
+     \vspace{-0.49cm} 
+    \begin{figure}[h!]
+     \includegraphics[width=0.85\textwidth]{fig/node-power} 
+     
+    \end{figure}
+    \end{minipage}%
+    
+  \begin{itemize} \item \small  \textcolor{black}{DVFS reduces the energy consumption while 
+   keeping all the nodes working.}
+               \item \small \textcolor{black}{It has a very small overhead compared to switching-off the idle nodes.}  \end{itemize} 
+    
+\vspace{-0.12cm}
+
  \begin{block}{\textcolor{white}{Challenge and Objective}}
 
-               \textcolor{blue}{Challenge:} \textcolor{black}{DVFS is used to reduce the energy, \textcolor{blue}{but} it degrades the performance simultaneously.}
+       \small  \textcolor{blue}{Challenge:} \textcolor{black}{DVFS is used to reduce the energy consumption, \textcolor{blue}{but} it degrades the performance simultaneously.}
                
                \vspace{0.1cm}
       \textcolor{blue}{Objective:} \textcolor{black}{Optimizing both energy consumption and performance of a parallel application at the same time when DVFS is used.}
\small         \textcolor{blue}{Objective:} \textcolor{black}{Applying the DVFS to minimize the energy consumption while maintaining the performance of the parallel application.}
 \end{block}
+ \tiny \textsuperscript{1} Fan, X., Weber, W., and Barroso, L. A. 2007.  Power provisioning
+for a warehouse-sized computer.
 
     \end{frame}
 
 %%%%%%%%%%%%%%%%%%%% 
 
 
-\begin{frame}{Contributions}
-\section{\small {Contributions}}
-\subsection{\small {3.1 Energy optimization of homogeneous platform}}
+\begin{frame}{The first contribution}
+
+\section{\small {Energy optimization of a homogeneous platform}}
+%\vspace{-3cm}
+ % \includegraphics[width=0.6\textwidth]{white.pdf} 
+
 \begin{center}
-\bf \textcolor{black}{First contribution} \\ 
-\vspace{1cm}
-\bf  \Large \textcolor{blue}{Energy optimization of homogeneous platform}
+\bf  \Large \textcolor{blue}{Energy optimization of a parallel application with iterations running over a homogeneous platform}
 \end{center}
  \end{frame}
 
 \begin{frame}{Objectives}
         \begin{femtoBlock}{} \vspace{-12 mm}
                 \begin{itemize} \small
-                   \item  Study the effect of the scaling factor $S$ on \textbf{energy consumption} of parallel iterative applications such as NAS 
-                          Benchmarks. \includegraphics[width=.06\textwidth]{c1/nasa.pdf} \medskip
-                   \item  Study the effect of the scaling factor $S$ on \textbf{performance} of these benchmarks.\medskip
-                   \item  Discovering the \textbf{energy-performance trade-off relation} when changing the frequency.\medskip
-                   \item  We propose an algorithm for selecting the scaling factor $S$ producing \textbf {optimal trade-off} between the energy and performance. \medskip
-                   \item  Improving Rauber and Rünger's\footnote{\tiny Thomas Rauber and Gudula Rünger. Analytical modeling and simulation of the  
-                          energy consumption \\  \quad ~ ~\quad    of  independent tasks. In Proceedings of the Winter Simulation Conference, 2012.} method that our method best on. 
+                   \item  Study the effect of the scaling factor on the \textbf{energy consumption and performance } of parallel  applications with iterations. \medskip
+                   
+                   \item  Discovering the \textbf{energy-performance trade-off relation} when changing the frequency of the processor.\medskip
+                   \item  Proposing an algorithm for selecting the scaling factor that produces  \textbf {the optimal trade-off} between the energy consumption and the performance. \medskip
+                   \item  Comparing the proposed algorithm to existing methods.
+                   
+                   
+                   %\footnote{\tiny Thomas Rauber and Gudula Rünger. Analytical modeling and simulation of the  
+                          %energy consumption \\  \quad ~ ~\quad    of  independent tasks. In Proceedings of the Winter Simulation Conference, 2012.} method that our method best on. 
                 \end{itemize}
-                 \let\thefootnote\relax\footnote{}
+                 %\let\thefootnote\relax\footnote{}
           \vspace{-10 mm}
         \end{femtoBlock}      
 \end{frame}
 %%%%%%%%%%%%%%%%%%%% 
 
 
-\begin{frame}{Parallel tasks execution over Homo. Platform}
+\begin{frame}{Execution of synchronous parallel tasks}
 \vspace{-0.5 cm}
 \begin{figure}
   \centering
-  \subfloat[Sync. imbalanced communications]{%
+  \subfloat[Synchronous imbalanced communications]{%
     \includegraphics[scale=0.49]{c1/commtasks}\label{fig:h1}}
-  \subfloat[Sync. imbalanced computations]{%
+  \subfloat[Synchronous imbalanced computations]{%
     \includegraphics[scale=0.49]{c1/compt}\label{fig:h2}}
-  \caption{Parallel tasks on homogeneous platform}
% \caption{Parallel tasks on homogeneous platform}
   \label{fig:homo}
 \end{figure}
 
 %%%%%%%%%%%%%%%%%%%%
 %%    SLIDE 11   %%
 %%%%%%%%%%%%%%%%%%%% 
-\begin{frame}{Energy model for homogeneous platform}    
+\begin{frame}{Energy model for homogeneous platform}    
       The power consumed by a processor divided into two power metrics: the dynamic (\textcolor{red}{$P_d$}) and static   
        (\textcolor{red}{$P_s$}) power. 
     \begin{equation}
 %%    SLIDE 12   %%
 %%%%%%%%%%%%%%%%%%%% 
 
-\begin{frame}{Energy model for homogeneous platform}
+\begin{frame}{Energy model for homogeneous platform}
        
           The frequency scaling factor is the ratio between the maximum and the new frequency, \textcolor{blue}{$S = \frac{F_{max}}{F_{new}}$}.  \medskip     
               
          \left( T_1 + \sum_{i=2}^{N} \frac{T_i^3}{T_1^2} \right) +
             P_{s} \cdot S_1  \cdot T_1 \cdot N$
         \end{block}     
-           \textcolor{blue}{$S_1$}: the max. scaling factor\\ 
-           \textcolor{blue}{$P_{d}$}: the dynamic power\\
-           \textcolor{blue}{$P_{s}$}: the static power\\
-           \textcolor{blue}{$T_I$}: the time of the slower task\\ 
-           \textcolor{blue}{$T_i$}: the time of the other tasks\\ 
-           \textcolor{blue}{$N$}:  the number of  nodes
+           \textcolor{blue}{$S_1$}: the maximum scaling factor.\\ 
+           \textcolor{blue}{$P_{d}$}: the dynamic power.\\
+           \textcolor{blue}{$P_{s}$}: the static power.\\
+           \textcolor{blue}{$T_I$}: the execution time of the slower task.\\ 
+           \textcolor{blue}{$T_i$}: the execution time of task i.\\ 
+           \textcolor{blue}{$N$}:  the number of  nodes.
        
 \end{frame}
   
 %\vspace{-0.3cm}
       \small 
          \begin{block}{\small Our objective function}
-         \centering{$\textbf{\emph {MaxDist}} = \max_{j=1,2,\dots ,F}             
-                    (\overbrace{P_{Norm}(S_j)}^{{Maximize}} - 
-                     \overbrace{E_{Norm}(S_j)}^{{Minimize}} )$}
+         \centering{$\textbf{\emph {\textcolor{red}{MaxDist}}} = \max_{j=1,2,\dots ,F}             
+                    (\overbrace{P_{Norm}(S_j)}^{{\textcolor{blue}{Maximize}}} - 
+                     \overbrace{E_{Norm}(S_j)}^{{\textcolor{blue}{Minimize}}} )$}
                                          
         \end{block}                
         \end{femtoBlock}
      
      \begin{figure}
   \animategraphics[autopause,controls,scale=0.28,buttonsize=0.2cm]{10}{dvfs-homo/a-}{0}{159}
-
+  %\includegraphics[width=0.6\textwidth]{dvfs-homo/a-159}
   \end{figure}
 \end{frame}
 
       \begin{femtoBlock}{}      
         \begin{itemize}
          \small
-           \item Our experiments are executed on the simulator SimGrid/SMPI v3.10.\medskip
-           \item Our algorithm is applied to  NAS parallel benchmarks.\medskip
+           \item The experiments were executed on the simulator SimGrid/SMPI v3.10.\medskip
+           \item The proposed algorithm was applied to the NAS parallel benchmarks.\medskip
            \item Each node in the cluster has 18 frequency values from \textbf{2.5$GHz$} to \textbf{800$MHz$}.\medskip
-           \item We run the classes A, B and C on 4, 8 or 9 and 16 nodes respectively.\medskip
-           \item The dynamic power with the highest frequency is equal to \textbf{20 $W$} and the power static is equal to \textbf{4 $W$}.
+           \item The proposed algorithm was evaluated over the A, B and C classes of the benchmarks using 4, 8 or 9 and 16 nodes respectively. \medskip
+           \item $P_d=20W$,  $P_s=4W$.
                 \end{itemize}
         \end{femtoBlock}
 \end{frame}
            $S_{opt} = \sqrt[3]{\frac{2}{N} \cdot \frac{P_{dyn}}{P_{static}} \cdot
             \left( 1 + \sum_{i=2}^{N} \frac{T_i^3}{T_1^3}\right) } $
         \end{block}   
+        
+        
     \centering {
          %\includegraphics[width=.33\textwidth]{c1/c1.pdf}
          %\qquad
          %\includegraphics[width=.33\textwidth]{c1/c2.pdf}}
            
          
-            \includegraphics[width=.55\textwidth]{c1/compare_c.pdf}}
+            \includegraphics[width=.55\textwidth]{c1/compare-c.pdf}}
         
 \end{frame}
 
     \vspace{-0.75cm}     
   \begin{figure}
   \animategraphics[autopause,controls,scale=0.28,buttonsize=0.2cm]{10}{homo-model/a-}{0}{356}
+  %\includegraphics[width=0.6\textwidth]{homo-model/a-356}
   \end{figure}
 \end{frame}
 
 %%%%%%%%%%%%%%%%%%%%
 %%    SLIDE 21   %%
 %%%%%%%%%%%%%%%%%%%% 
-\begin{frame}{Comparing the new model with Rauber model }
+\begin{frame}{\large Comparing the new model with Rauber's model }
  \vspace{0.1cm}    
  \centering
     \includegraphics[width=.45\textwidth]{c1/energy_con}
 %%%%%%%%%%%%%%%%%%%% 
 
 
-\begin{frame}{Contribution}
+\begin{frame}{The second contribution}
 
-\subsection{\small {3.2 Energy optimization of heterogeneous platform}}
+\section{\small {Energy optimization of a heterogeneous platform}}
 \begin{center}
-\bf \textcolor{black}{Second contribution} \\ 
-\vspace{1cm}
-\bf  \Large \textcolor{blue}{Energy optimization of Heterogeneous platform}
+
+
+\bf  \Large \textcolor{blue}{Energy optimization of a parallel application with iterations running over a Heterogeneous platform}
 \end{center}
  \end{frame}
  
 \begin{frame}{Objectives}
         \begin{femtoBlock}{} \vspace{-12 mm}
                 \begin{itemize} \small
-                  \item   Evaluating the  \textcolor{blue}{new energy and performance models} of message passing  applications with iterations running  
-                          over a heterogeneous platform (cluster and Grid). \medskip
-                   \item  Study the effect of the scaling factor $S$ on both \textcolor{blue}{energy consumption  and the performance} of
+                  \item   Proposing  \textcolor{blue}{new energy and performance models} for message passing  applications with iterations running  
+                          over a heterogeneous platform (cluster or Grid). \medskip
+                   \item  Studying the effect of the scaling factor $S$ on both the \textcolor{blue}{energy consumption  and the performance} of
                           message passing iterative applications.    \medskip                      
                    
-                   \item  Computing  the vector of scaling factors ($S_1, S_2, ..., S_n$)  producing \textcolor{blue} {optimal trade-off} between
-                           energy consumption and performance. 
+                   \item  Computing  the vector of scaling factors ($S_1, S_2, ..., S_n$)  producing \textcolor{blue} {the optimal trade-off} between
+                          the energy consumption and the performance. 
                 \end{itemize}
                  
           \vspace{-10 mm}
 %%    SLIDE 25    %%
 %%%%%%%%%%%%%%%%%%%%
  \begin{frame}{The energy consumption model} 
-    -The overall energy consumption of a message passing synchronous distributed application executed over a
-    heterogeneous platform is computed as  follows:
+    The overall energy consumption of a message passing synchronous  application executed over
+     a heterogeneous platform can be computed as  follows:
     \begin{multline}
      \label{eq:energy}
      \textcolor{red}{E} = \textcolor{blue}{\sum_{i=1}^{N} {(S_i^{-2} \cdot Pd_i \cdot  Tcp_i)}} + {} \\
   \vspace{-0.5cm}
  \begin{figure}
   \animategraphics[autopause,controls,scale=0.28,buttonsize=0.2cm]{10}{heter-model/a-}{0}{272}
+  %\includegraphics[width=0.6\textwidth]{heter-model/a-272}
   \end{figure}
  \end{frame}
  
 %%%%%%%%%%%%%%%%%%%%
 %%    SLIDE 27    %%
 %%%%%%%%%%%%%%%%%%%%
-\begin{frame}{The trade-off between energy  and performance}
-    \vspace{-7 mm}
-    \begin{figure}
-     \centering{ \includegraphics[width=.4\textwidth]{c2/heter}}
-    \end{figure}
-    \vspace{-7 mm}
-    \textcolor{red}{\underline{Step1}}: computing the normalized energy \textcolor{blue}{$E_{norm} = \frac{E_{reduced}} 
-     {E_{Max}}$}. \\
-     \textcolor{red}{\underline{Step2}}: computing the normalized performance \textcolor{blue}{$P_{norm} = \frac{T_{Max}}{T_{new}}$}.
+%\begin{frame}{The trade-off between energy  and performance}
+   % \vspace{-7 mm}
+    %\begin{figure}
+   %  \centering{ \includegraphics[width=.4\textwidth]{c2/heter}}
+   % \end{figure}
+   % \vspace{-7 mm}
+   % \textcolor{red}{\underline{Step1}}: computing the normalized energy \textcolor{blue}%{$E_{norm} = \frac{E_{reduced}} 
+    %{E_{Max}}$}. \\
+    % \textcolor{red}{\underline{Step2}}: computing the normalized performance \textcolor{blue}{$P_{norm} = \frac{T_{Max}}{T_{new}}$}.
    
-     \begin{block}{\small The tradeoff model}
-     \begin{equation}
-      \label{eq:max}
-      \textcolor{red}{MaxDist} =
-      \mathop {\max_{i=1,\dots F}}_{j=1,\dots,N}
-       (\overbrace{P_{norm}(S_{ij})}^{\text{\textcolor{blue}{Maximize}}} -
-       \overbrace{E_{norm}(S_{ij})}^{\text{\textcolor{blue}{Minimize}}} )
-      \end{equation}
-     \end{block}  
-\end{frame}
+   %  \begin{block}{\small The tradeoff model}
+    % \begin{equation}
+    %  \label{eq:max}
+    %  \textcolor{red}{MaxDist} =
+     % \mathop {\max_{i=1,\dots F}}_{j=1,\dots,N}
+      % (\overbrace{P_{norm}(S_{ij})}^{\text{\textcolor{blue}{Maximize}}} -
+      % \overbrace{E_{norm}(S_{ij})}^{\text{\textcolor{blue}{Minimize}}} )
+      %\end{equation}
+    % \end{block}  
+%\end{frame}
    
  
 %%%%%%%%%%%%%%%%%%%%
  
   \begin{figure}
   \animategraphics[autopause,controls,scale=0.28,buttonsize=0.2cm]{10}{dvfs-heter/a-}{0}{650}
+ % \includegraphics[width=0.6\textwidth]{dvfs-heter/a-650}
   \end{figure}
 \end{frame}
 
 %%%%%%%%%%%%%%%%%%%%
 %%    SLIDE 30    %%
 %%%%%%%%%%%%%%%%%%%%
-\begin{frame}{Experiments over heterogeneous cluster  }   
+\begin{frame}{Experiments over heterogeneous cluster  }   
         \begin{itemize}
          \small
-           \item The experiments executed on the simulator SimGrid/SMPI v3.10.\medskip
+           \item The experiments were executed on the simulator SimGrid/SMPI v3.10.\medskip
            \item The scaling algorithm was applied to the NAS parallel benchmarks class C.\medskip
            \item Four types of processors with different computing powers were used.\medskip
-           \item We ran the benchmarks on different number of nodes ranging from 4 to 144 nodes.\medskip
-           \item The total power consumption of the chosen CPUs  is composed of $80\%$ for dynamic power and $20\%$ for static power.
+           \item The benchmarks were executed with different number of nodes ranging from 4 to 144 nodes.\medskip
+           \item It was assumed that the total power consumption of the CPU consist of 80\% dynamic power and 20\% static power.
                   \medskip
          
         \end{itemize}
    \centering
     \includegraphics[width=0.8\textwidth]{c2/energy_saving.pdf}
     
-    \textcolor{blue}{On average, it saves the energy consumption by \textcolor{red}{29\%} 
-     of NAS benchmarks class C executed over 8 nodes}
+    \textcolor{blue}{On average, it reduces the energy consumption by \textcolor{red}{29\%} 
+     for the class C of the NAS Benchmarks executed over 8 nodes}
     
    \end{figure}
 \end{frame} 
     
     \includegraphics[width=.8\textwidth]{c2/perf_degra.pdf}
    
-   \textcolor{blue}{On average, it degrades the performance by \textcolor{red}{3.8\%} 
-     of NAS benchmarks class C executed over 8 nodes}
+   \textcolor{blue}{On average, it degrades  by \textcolor{red}{3.8\%} the performance
+     of NAS Benchmarks class C executed over 8 nodes}
      \end{figure}
 \end{frame} 
  
 %%%%%%%%%%%%%%%%%%%%
 %%    SLIDE 33    %%
 %%%%%%%%%%%%%%%%%%%%
-\begin{frame}{The results of the three powers scenarios}
+\begin{frame}{The results of the three power scenarios}
    \vspace{-5 mm}
    \begin{figure}[!t]
    \centering
 %%%%%%%%%%%%%%%%%%%%
 %%    SLIDE 34    %%
 %%%%%%%%%%%%%%%%%%%%
-\begin{frame}{The comparing our method}
-    The proposed method (MaxDist) was compared to the EDP algorithm that minimizes  the \textcolor{blue}{
-    $\mathit{energy}\times \mathit{delay}$} value.
+\begin{frame}{Comparing the objective function to EDP}
+     
+     EDP is the products between the energy consumption and the delay.
     \vspace{-5 mm}
     \begin{figure}[!t]
     \centering
 %%%%%%%%%%%%%%%%%%%%
 %%    SLIDE 35    %%
 %%%%%%%%%%%%%%%%%%%%
-\begin{frame}{Energy optimization of grid platform} 
-   \begin{figure}[!t]
-    \centering
-             \includegraphics[width=.6\textwidth]{c2/grid5000.pdf}
+%\begin{frame}{Energy optimization of grid platform} 
+  % \begin{figure}[!t]
+   % \centering
+         %    \includegraphics[width=.6\textwidth]{c2/grid5000.pdf}
              
-           \small  10 sites distributed over France and Luxembourg
-        \end{figure}
-\end{frame} 
+        %   \small  10 sites distributed over France and Luxembourg
+        %\end{figure}
+%\end{frame} 
 
 
 %%%%%%%%%%%%%%%%%%%%
 %%    SLIDE 36    %%
 %%%%%%%%%%%%%%%%%%%%
- \begin{frame}{Performance, Energy and trade-off models} \small
-  \begin{block}{\small The performance model of grid}
-    \begin{equation}
-  \label{eq:perf}
-  \Tnew = \mathop{\max_{i=1,\dots N}}_{j=1,\dots,M_i}({\TcpOld[ij]} \cdot S_{ij}) 
-  +\mathop{\min_{j=1,\dots,M_h}}  (\Tcm[hj])
-\end{equation}
-    \end{block}   
+\begin{frame}{The grid architecture}
+\begin{center}
+\includegraphics[width=.8\textwidth]{c2/init_freq.pdf}
+\end{center}
+
+ %\begin{frame}{Performance, Energy and trade-off models} \small
+  %\begin{block}{\small The performance model of grid}
+   % \begin{equation}
+  %\label{eq:perf}
+  %\Tnew = \mathop{\max_{i=1,\dots N}}_{j=1,\dots,M_i}({\TcpOld[ij]} \cdot S_{ij}) 
+ % +\mathop{\min_{j=1,\dots,M_h}}  (\Tcm[hj])
+%\end{equation}
+    %\end{block}   
  
  
- \begin{block}{\small The energy model of grid}\small
-    \begin{equation}
-  \label{eq:energy}
- E = \sum_{i=1}^{N} \sum_{i=1}^{M_i} {(S_{ij}^{-2} \cdot \Pd[ij] \cdot  \Tcp[ij])} +  
- \sum_{i=1}^{N} \sum_{j=1}^{M_i} (\Ps[ij] \cdot \Tnew)
-\end{equation}
-    \end{block}  
-
-\begin{block}{\small The trade-off model of grid}
-\small
-    \begin{equation}
-   \label{eq:max}
-  \MaxDist =
-  \mathop{  \mathop{\max_{i=1,\dots N}}_{j=1,\dots,M_i}}_{k=1,\dots,F_j}
-      (\overbrace{\Pnorm(S_{ijk})}^{\text{Maximize}} -
-       \overbrace{\Enorm(S_{ijk})}^{\text{Minimize}} )
-\end{equation}
-    \end{block}  
+ %\begin{block}{\small The energy model of grid}\small
+  %  \begin{equation}
+  %\label{eq:energy}
+ %E = \sum_{i=1}^{N} \sum_{i=1}^{M_i} {(S_{ij}^{-2} \cdot \Pd[ij] \cdot  \Tcp[ij])} +  
+% \sum_{i=1}^{N} \sum_{j=1}^{M_i} (\Ps[ij] \cdot \Tnew)
+%\end{equation}
+   % \end{block}  
+
+%\begin{block}{\small The trade-off model of grid}
+%\small
+    %\begin{equation}
+   %\label{eq:max}
+  %\MaxDist =
+  %\mathop{  \mathop{\max_{i=1,\dots N}}_{j=1,\dots,M_i}}_{k=1,\dots,F_j}
+   %   (\overbrace{\Pnorm(S_{ijk})}^{\text{Maximize}} -
+    %   \overbrace{\Enorm(S_{ijk})}^{\text{Minimize}} )
+%\end{equation}
+   % \end{block}  
+     
      
  \end{frame}
   
 %%    SLIDE 37    %%
 %%%%%%%%%%%%%%%%%%%%
  \begin{frame}{Experiments over Grid'5000}
-  \centering
-
+   \textcolor{blue}{The experiments were conducted using three 
+          clusters distributed over one or two sites.}
+           \vspace{-7 mm}
+          \begin{center}
           \includegraphics[width=.5\textwidth]{c2/grid5000-2.pdf}
-          
-          \vspace{-3 mm}
-          \textcolor{blue}{The experiments executed over one site and two sites scenarios}
-          
-              \vspace{1mm}
-
+          \end{center}          
+      \vspace{-10 mm}
+  \textcolor{blue}{Grid'5000 power measurement tools were used.} 
+        \vspace{-9 mm}
+  \begin{center}
           \includegraphics[width=.5\textwidth]{c2/power_consumption.pdf}
+          \end{center}
           
-        \textcolor{blue}{We used Grid'5000 power measurement tools} 
+      
 \end{frame}   
 
 
 \begin{frame}{Experiments over Grid'5000}
 
    \begin{minipage}{0.4\textwidth}
-       \textcolor{blue}{Execution the NAS class D on 16 nodes saves the energy by  
-        \textcolor{red}{30\%}}
+       %\textcolor{blue}{Execution the NAS class D on 16 nodes saves the energy by  
+        %\textcolor{red}{30\%}}
+     \small \textcolor{blue}{The average energy saving =  \textcolor{red}{30\%}}
    \end{minipage}  
      \begin{minipage}{0.55\textwidth}
         \begin{figure}[h!]
 \end{minipage}
 
          \begin{minipage}{0.4\textwidth}
-           \textcolor{blue}{Execution the NAS class D on 16 nodes degrades the 
-                performance by \textcolor{red}{3.2\%}}
+           %\textcolor{blue}{Execution the NAS class D on 16 nodes degrades the 
+                %performance by \textcolor{red}{3.2\%}}
+      \small  \textcolor{blue}{The average performance degradation  =  \textcolor{red}{3.2\%}}  
         \end{minipage}
        \begin{minipage}{0.55\textwidth}
          \begin{figure}[h!] 
   \includegraphics[width=.48\textwidth]{c2/per_d_mc.eps}
   \end{figure} 
   
-  \centering \small \textcolor{blue}{Using multi-core per node scenario decreases the computations to communications ratio}.
+  \centering \small \textcolor{blue}{Using multi-cores per node scenario decreases the computations to communications ratio}.
 \end{frame}
 
 
 %%%%%%%%%%%%%%%%%%%%
 %%    SLIDE 40    %%
 %%%%%%%%%%%%%%%%%%%%
-\begin{frame}{Continuation}
-\subsection{\small {3.3 Energy optimization of asynchronous applications}}
+\begin{frame}{The third contribution}
+\section{\small {Energy optimization of asynchronous applications}}
 \begin{center}
-\bf \textcolor{black}{Third contribution} \\ 
-\vspace{1cm}
-\bf  \Large \textcolor{blue}{Energy optimization of asynchronous applications}
+\bf  \Large \textcolor{blue}{Energy optimization of asynchronous iterative message passing  applications}
 \end{center}
  \end{frame}
 
 %%    SLIDE 41   %%
 %%%%%%%%%%%%%%%%%%%%
 \begin{frame}{Problem definition}\vspace{0.8 mm}
-\textcolor{blue}{Execution the parallel iterative application with synchronous communications }
+\textcolor{blue}{The execution of a synchronous parallel iterative application over a grid }
 \vspace{-8 mm}
 \begin{figure}
-  \animategraphics[autopause,controls,scale=0.25,buttonsize=0.2cm]{10}{syn/a-}{0}{503}
+ \animategraphics[autopause,controls,scale=0.25,buttonsize=0.2cm]{10}{syn/a-}{0}{503}
+ %\includegraphics[width=0.6\textwidth]{syn/a-503}
   \end{figure}
 \end{frame}
 
 %%    SLIDE 42   %%
 %%%%%%%%%%%%%%%%%%%%
 \begin{frame}{Problem definition}\vspace{0.8 mm}
-\textcolor{blue}{Execution the parallel iterative application with synchronous communications }
+\textcolor{blue}{The execution of an asynchronous parallel iterative application over a grid }
 \vspace{-8 mm}
 \begin{figure}
-  \animategraphics[autopause,controls,scale=0.25,buttonsize=0.2cm]{10}{asyn/a-}{0}{440}
+ \animategraphics[autopause,controls,scale=0.25,buttonsize=0.2cm]{10}{asyn/a-}{0}{440}
+ %\includegraphics[width=0.6\textwidth]{asyn/a-440}
   \end{figure}
 \end{frame}
 
 \vspace{-8 mm}
 \begin{figure}
   \animategraphics[autopause,controls,scale=0.25,buttonsize=0.2cm]{10}{asyn+dvfs/a-}{0}{314}
+  %\includegraphics[width=0.6\textwidth]{asyn+dvfs/a-314}
   \end{figure}
 \end{frame}
 
 %%%%%%%%%%%%%%%%%%%%
 %%    SLIDE 44   %%
 %%%%%%%%%%%%%%%%%%%%
-\begin{frame}{The performance models}
+%\begin{frame}{The performance models}
 
-\begin{block}{\small The performance model of Asynch. Applications}\small
-\begin{equation}
-  \label{eq:asyn_time}
 \Tnew =  \frac{\sum_{i=1}^{N} \sum_{j=1}^{M_i}({\TcpOld[ij]} \cdot S_{ij})} {N  \cdot M_i }
-\end{equation}
-\end{block}
+%\begin{block}{\small The performance model of Asynch. Applications}\small
+%\begin{equation}
+  %\label{eq:asyn_time}
%\Tnew =  \frac{\sum_{i=1}^{N} \sum_{j=1}^{M_i}({\TcpOld[ij]} \cdot S_{ij})} {N  \cdot M_i }
+%\end{equation}
+%\end{block}
 
 
-\begin{block}{\small The performance model of Hybrid Applications}\small
-\begin{equation}
-  \label{eq:asyn_perf}
-  \Tnew =  \frac{\sum_{i=1}^{N} (\max_{j=1,\dots, M_i} ({\TcpOld[ij]} \cdot S_{ij}) +  
-   \min_{j=1,\dots,M_i} ({\Ltcm[ij]}))}{N}
-\end{equation}
-\end{block}
+%\begin{block}{\small The performance model of Hybrid Applications}\small
+%\begin{equation}
+  %\label{eq:asyn_perf}
+  %\Tnew =  \frac{\sum_{i=1}^{N} (\max_{j=1,\dots, M_i} ({\TcpOld[ij]} \cdot S_{ij}) +  
+   %\min_{j=1,\dots,M_i} ({\Ltcm[ij]}))}{N}
+%\end{equation}
+%\end{block}
 
 
-\end{frame}
+%\end{frame}
 
 
 
 %%%%%%%%%%%%%%%%%%%%
 %%    SLIDE 45   %%
 %%%%%%%%%%%%%%%%%%%%
-\begin{frame}{The energy consumption models}
+%\begin{frame}{The energy consumption models}
 
-\begin{block}{\small The energy model of Asynch. Applications}\small
-\begin{equation}
-  \label{eq:asyn_energy1}
- E = \sum_{i=1}^{N} \sum_{j=1}^{M_i} {(S_{ij}^{-2} \cdot  \Tcp[ij] \cdot (\Pd[ij]+\Ps[ij]) )} 
-\end{equation} 
-\end{block}
+%\begin{block}{\small The energy model of Asynch. Applications}\small
+%\begin{equation}
+  %\label{eq:asyn_energy1}
+% E = \sum_{i=1}^{N} \sum_{j=1}^{M_i} {(S_{ij}^{-2} \cdot  \Tcp[ij] \cdot (\Pd[ij]+\Ps[ij]) )} 
+%\end{equation} 
+%\end{block}
 
 
-\begin{block}{\small The energy model of Hybrid Applications}\small
-\begin{multline}
-  \label{eq:asyn_energy}
- E = \sum_{i=1}^{N} \sum_{j=1}^{M_i} {(S_{ij}^{-2} \cdot \Pd[ij] \cdot  \Tcp[ij])} +  \sum_{i=1}^{N} \sum_{j=1}^{M_i} (\Ps[ij] \cdot \\
- ( \mathop{\max_{j=1,\dots,M_i}} ({\Tcp[ij]} \cdot S_{ij}) + \mathop{\min_{j=1,\dots,M_i}} ({\Ltcm[ij]}))) 
-\end{multline}
-\end{block}
+%\begin{block}{\small The energy model of Hybrid Applications}\small
+%\begin{multline}
+  %\label{eq:asyn_energy}
+ %E = \sum_{i=1}^{N} \sum_{j=1}^{M_i} {(S_{ij}^{-2} \cdot \Pd[ij] \cdot  \Tcp[ij])} +  \sum_{i=1}^{N} \sum_{j=1}^{M_i} (\Ps[ij] \cdot \\
+% ( \mathop{\max_{j=1,\dots,M_i}} ({\Tcp[ij]} \cdot S_{ij}) + \mathop{\min_{j=1,\dots,M_i}} ({\Ltcm[ij]}))) 
+%\end{multline}
+%\end{block}
+%\end{frame}
+
+
+
+%%%%%%%%%%%%%%%%%%%%
+%%    SLIDE 44   %%
+%%%%%%%%%%%%%%%%%%%%
+\begin{frame}{The performance and the energy models }
+
+\centering
+\includegraphics[width=0.9\textwidth]{syn-vs-asyn.pdf}
 \end{frame}
 
 
 
+
+
 %%%%%%%%%%%%%%%%%%%%
 %%    SLIDE 46   %%
 %%%%%%%%%%%%%%%%%%%%
 %%%%%%%%%%%%%%%%%%%%
 %%    SLIDE 47   %%
 %%%%%%%%%%%%%%%%%%%%
-\begin{frame}{The experimental results}
+\begin{frame}{The experiments}
    \vspace{-5 mm}
    \begin{figure}[!t]
-   \centering
+   \begin{itemize}
+      \small
+        \item The architecture of the grid:
+   \end{itemize}
     \includegraphics[width=0.5\textwidth]{c3/hybrid-model.pdf} 
    \end{figure}
    \begin{itemize}
       \small
-        \item Execution the iterative multi-splitting method over simulated Grid.
-        \item Execution the iterative multi-splitting method over Grid'5000 test-bed.
+        \item Applying the proposed algorithm to the asynchronous iterative message passing multi-splitting method.
+        \item Evaluating the application over the simulator and Grid'5000.
    \end{itemize}
 \end{frame} 
 
 %%    SLIDE 48   %%
 %%%%%%%%%%%%%%%%%%%%
 \begin{frame}{The simulation results}
-\centering \small \textcolor{blue}{The best scenario in term of energy and performance  is the Async. MS with Sync. DVFS}
+\centering \small \textcolor{blue}{The best scenario in terms of energy and performance  is the Async. MS with Sync. DVFS}
 
 \centering
-    \includegraphics[scale=0.46]{c3/energy_saving.eps}
+    \includegraphics[scale=0.42]{c3/energy_saving.eps}
 
- \centering  The average of energy saving  = \textcolor{red}{22\%}
+ \centering  The average energy saving  = \textcolor{red}{22\%}
 \end{frame} 
 
 
 \begin{frame}{The simulation results}
 \centering
    
-     \includegraphics[scale=0.46]{c3/perf_degra.eps}
+     \includegraphics[scale=0.42]{c3/perf_degra.eps}
      
- \centering    The average of  speed-up  = \textcolor{red}{5.72\%}
+ \centering    The average speed-up  = \textcolor{red}{5.72\%}
 \end{frame} 
 
 
     \includegraphics[width=0.53\textwidth]{c3/perf-deg-compare.eps}
    \end{figure}
     \vspace{-5 mm}
-     \centering
-   The energy saving = \textcolor{red}{26.93\%}, speeds up =  \textcolor{red}{21.48\%}
+     \centering \footnotesize
+The average energy saving = \textcolor{red}{26.93\%}, the average speed-up =  \textcolor{red}{21.48\%}
 \end{frame} 
 
 
 %%    SLIDE 52  %%
 %%%%%%%%%%%%%%%%%%%%
 \begin{frame}{Conclusions}
-\section{Conclusions}
+\section{Conclusions and Perspectives}
 \begin{itemize}
 
-\small  \barrow  We have proposed \textcolor{blue}{a new energy consumption and performance} models for 
-     synchronous and asynchronous parallel applications with iterations.
-     
+\small  \barrow  Three \textcolor{blue}{ new energy consumption and performance} models were proposed for synchronous or asynchronous parallel applications with iterations running over 
+\textcolor{blue}{homogeneous and  heterogeneous clusters or grids}.  
       
-\small \barrow The parallel applications with iterations were executed over different parallel architectures such as: \textcolor{blue}{homogeneous  cluster, heterogeneous  cluster and
-grid}.
 
-\small \barrow We have proposed \textcolor{blue}{new objective function} to optimize both the energy consumption and the performance.
+
+\small \barrow \textcolor{blue}{A new objective function} to optimize both the energy consumption and the performance was proposed.
 
 \small \barrow \textcolor{blue}{New online frequency selecting algorithms} for clusters and grids were developed.
 
 \small \barrow The proposed algorithms were applied to the \textcolor{blue}{NAS parallel benchmarks} and \textcolor{blue}{the
 Multi-splitting} method.
 
-\small \barrow The proposed algorithms were evaluated over the \textcolor{blue}{SimGrid simulator and over  Grid'5000 testbed}.
+\small \barrow The proposed algorithms were evaluated over the \textcolor{blue}{SimGrid simulator} and over  the \textcolor{blue}{Grid'5000 testbed}.
 
-\small  \barrow All the proposed methods were compared with either \textcolor{blue}{Rauber and Rünger  method} or  \textcolor{blue}{EDP objective function}.
+\small  \barrow All the proposed methods were compared to either \textcolor{blue}{Rauber and Rünger's  method} or to the \textcolor{blue}{EDP objective function}.
 
 
 \end{itemize}
@@ -1085,7 +1115,7 @@ Multi-splitting} method.
 %%%%%%%%%%%%%%%%%%%%
 %%    SLIDE 53   %%
 %%%%%%%%%%%%%%%%%%%%
-\begin{frame}{Publication}
+\begin{frame}{Publications}
 
 \begin{block}{\small Journal Articles }\scriptsize
 \begin{enumerate}[$\lbrack$1$\rbrack$]
@@ -1126,11 +1156,10 @@ Multi-splitting} method.
 %%    SLIDE 54   %%
 %%%%%%%%%%%%%%%%%%%%
 \begin{frame}{Perspectives}
-\section{Perspectives}
 
 \begin{itemize}
 
-\small  \barrow We will adapt the proposed algorithms to take into consideration the
+\small  \barrow The proposed algorithms should  take into consideration the
 \textcolor{blue}{variability between some iterations}.
 
 \small  \barrow The proposed algorithms should be applied to \textcolor{blue}{other message passing methods with iterations} in order to see how they adapt to the characteristics of these methods.
@@ -1147,7 +1176,7 @@ Multi-splitting} method.
 %%%%%%%%%%%%%%%%%%%%
 \begin{frame}{Fin} \vspace{-10 mm}
 
-            \centering \Large \textcolor{blue}{Thanks for Your Listening}
+            \centering \Large \textcolor{blue}{Thank you for your listening}
             
             \vspace{2cm}
             \centering \textcolor{blue}{ {\Large Questions?}}