]> AND Private Git Repository - ThesisAhmed.git/blobdiff - thesis-presentation/AhmedSlides.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
Merge branch 'master' of ssh://bilbo.iut-bm.univ-fcomte.fr/ThesisAhmed
[ThesisAhmed.git] / thesis-presentation / AhmedSlides.tex
index d4fd8c3611ade4f8fc58d77d8365cff08b1aa6dc..9bb4b6f7df7e151fa00ce96188de24fb5a7ac9bf 100644 (file)
@@ -19,7 +19,7 @@
   \todo[color=red!10,#1]{\sffamily\textbf{JC:} #2}\xspace}
 \definecolor{myblue}{RGB}{0,29,119}
 \newcommand{\Xsub}[2]{{\ensuremath{#1_\mathit{#2}}}}
   \todo[color=red!10,#1]{\sffamily\textbf{JC:} #2}\xspace}
 \definecolor{myblue}{RGB}{0,29,119}
 \newcommand{\Xsub}[2]{{\ensuremath{#1_\mathit{#2}}}}
-
+\usepackage{fixltx2e}
 %% used to put some subscripts lower, and make them more legible
 \newcommand{\fxheight}[1]{\ifx#1\relax\relax\else\rule{0pt}{1.52ex}#1\fi}
 
 %% used to put some subscripts lower, and make them more legible
 \newcommand{\fxheight}[1]{\ifx#1\relax\relax\else\rule{0pt}{1.52ex}#1\fi}
 
@@ -75,8 +75,8 @@
 %Iterations using CPU Frequency Scaling} 
 \vspace{2cm}
 
 %Iterations using CPU Frequency Scaling} 
 \vspace{2cm}
 
-\title{   \textbf{Energy Consumption Optimization of   Parallel Applications with Iterations   using CPU Frequency Scaling} \\ \vspace{0.2cm} \hspace{1.8cm}\textbf{\textcolor{cyan}{\small PhD Dissertation Defense}}}\vspace{-1cm}
-\author{ \textbf{Ahmed Badri Muslim Fanfakh} \\ \vspace{0.5cm}\small Under Supervision: \textcolor{cyan}{\small  Raphaël COUTURIER and Jean-Claude CHARR} \\\vspace{0.1cm} \textcolor{blue}{ University of Franche-Comté - FEMTO-ST - DISC Dept.  - AND Team} \\ ~~~~~~~~~~~~~~~~~~~~~ \textbf{\textcolor{blue}{ 17 October 2016 }}} 
+\title{   \textbf{Energy Consumption Optimization of   Parallel Applications with Iterations   using CPU Frequency Scaling} \\ \vspace{0.2cm} \hspace{1.8cm}\textbf{\textcolor{cyan}{\small PhD Dissertation Defense}}}\vspace{-0.5cm}
+\author{ \textbf{Ahmed Badri Muslim Fanfakh} \\ \vspace{0.5cm}\small Under the supervision of: \\ \textcolor{cyan}{\small  Raphaël COUTURIER and Jean-Claude CHARR} \\\vspace{0.1cm} \textcolor{blue}{ UBFC - FEMTO-ST - DISC Dept.  - AND Team} \\ ~~~~~~~~~~~~~~~~~~~~~ \textbf{\textcolor{blue}{ 17 October 2016 }}} 
 
 \date{}
 \vspace{-3cm}
 
 \date{}
 \vspace{-3cm}
 %%%%%%%%%%%%%%%%%%%% 
 \begin{frame}{Introduction and problem definition}
  \section{\small {Introduction and Problem definition}}
 %%%%%%%%%%%%%%%%%%%% 
 \begin{frame}{Introduction and problem definition}
  \section{\small {Introduction and Problem definition}}
-   \bf \textcolor{blue}{Approaches to increase the computing power:}
+   \bf \textcolor{blue}{To get more computing power:}
      \begin{minipage}{0.5\textwidth} 
      \begin{minipage}{0.5\textwidth} 
-      \textcolor{blue}{1)} \small  \bf \textcolor{black}{Increasing the frequency of processor}
+      \textcolor{blue}{1)} \small  \bf \textcolor{black}{Increase the frequency of a  processor.\\ (limited due to overheating)}
     \end{minipage}%
     \begin{minipage}{0.6\textwidth} 
     
     \end{minipage}%
     \begin{minipage}{0.6\textwidth} 
     
     \end{minipage}%
     \vspace{0.2cm}
     \begin{minipage}{0.5\textwidth} 
     \end{minipage}%
     \vspace{0.2cm}
     \begin{minipage}{0.5\textwidth} 
-     \textcolor{blue}{2)} \small \bf \textcolor{black}{Increasing the number of nodes}        
+     \textcolor{blue}{2)} \small \bf \textcolor{black}{Use more nodes.}
+     
+ \textcolor{black}{The supercomputer Tianhe-2 has more than 3 million cores and consumes around 17.8 megawatts.}  
+          
     \end{minipage}%
     \begin{minipage}{0.6\textwidth} 
     \begin{figure}[h!]
     \end{minipage}%
     \begin{minipage}{0.6\textwidth} 
     \begin{figure}[h!]
  
  
  
  
  
  
-%%%%%%%%%%%%%%%%%%%%
-%%    SLIDE 04    %%
-%%%%%%%%%%%%%%%%%%%% 
-\begin{frame}{Introduction and problem definition}
- \bf \textcolor{blue}{Processor frequency and its energy consumption}
- \vspace{0.4cm}
-   \begin{minipage}{0.5\textwidth} 
-   \textcolor{blue}{$\blacktriangleright$} 
-  \small  \bf \textcolor{black}{ The power consumption of a processor increases exponentially  when its    
-      frequency is increased}
-    \end{minipage}%
-    \begin{minipage}{0.5\textwidth} 
-    \begin{figure}[h!]
-     \includegraphics[width=0.7\textwidth]{fig/freq-power} 
-    \end{figure}
-    \end{minipage}%
-       
-    \begin{minipage}{0.5\textwidth} 
-     \textcolor{blue}{$\blacktriangleright$} 
-     \small \bf \textcolor{black}{The biggest power consumption is consumed by a processor in the computing node}
-      
-    \end{minipage}%
-    \begin{minipage}{0.6\textwidth} 
-    \begin{figure}[h!]
-     \includegraphics[width=0.9\textwidth]{fig/node-power} 
-    \end{figure}
-    \end{minipage}%
-    
- \end{frame}
+
  %%%%%%%%%%%%%%%%%%%
  %%%%%%%%%%%%%%%%%%%
-%%    SLIDE 05   %%
+%%    SLIDE 04   %%
 %%%%%%%%%%%%%%%%%%%% 
 %%%%%%%%%%%%%%%%%%%% 
-\begin{frame}{Introduction and problem definition}
- \vspace{0.1cm}
- \bf \textcolor{blue}{Techniques for energy consumption reduction}
+\begin{frame}{Techniques for energy consumption reduction}
+
      \textcolor{blue}{1)} \bf \textcolor{black}{Switch-off idle nodes method}  
     \vspace{-0.9cm}
     \begin{figure}
      \animategraphics[autopause,loop,controls,scale=0.25,buttonsize=0.2cm]{200}{on-off/a-}{0}{69}
      \textcolor{blue}{1)} \bf \textcolor{black}{Switch-off idle nodes method}  
     \vspace{-0.9cm}
     \begin{figure}
      \animategraphics[autopause,loop,controls,scale=0.25,buttonsize=0.2cm]{200}{on-off/a-}{0}{69}
+     %\includegraphics[width=0.6\textwidth]{on-off/a-69}
     \end{figure}
  \end{frame}
 
     \end{figure}
  \end{frame}
 
 \begin{frame}{Techniques for energy consumption reduction}
  
   \textcolor{blue}{2)} \bf \textcolor{black}{Dynamic voltage and frequency Scaling (DVFS)}
 \begin{frame}{Techniques for energy consumption reduction}
  
   \textcolor{blue}{2)} \bf \textcolor{black}{Dynamic voltage and frequency Scaling (DVFS)}
-     \vspace{-0.5cm}
+     \vspace{-0.9cm}
     \begin{figure}
     \begin{figure}
-     \animategraphics[autopause,controls,scale=0.25,buttonsize=0.2cm]{10}{DVFS-meq/a-}{0}{109}
+    \animategraphics[autopause,controls,scale=0.25,buttonsize=0.2cm]{10}{DVFS-meq/a-}{0}{109}
+     %\includegraphics[width=0.6\textwidth]{DVFS-meq/a-109}
     \end{figure}
     \end{frame}
  
     \end{figure}
     \end{frame}
  
 %%%%%%%%%%%%%%%%%%%%
 %%    SLIDE 07    %%
 %%%%%%%%%%%%%%%%%%%% 
 %%%%%%%%%%%%%%%%%%%%
 %%    SLIDE 07    %%
 %%%%%%%%%%%%%%%%%%%% 
-\begin{frame}{Using the energy reduction method}
-\section{\small {Using the energy reduction method}}
-\begin{block}{\textcolor{white}{Why we used DVFS method:}}
-\begin{itemize}
-               \item \textcolor{black}{It used to reduce the energy while keeping all node working, thus  it is more conventional with parallel computing.}
-               \item \textcolor{black}{It has a very small overhead compared to switch-off idle nodes method.}
+\begin{frame}{Motivations}
+\vspace{0.05cm}
+\section{\small {Motivations}}
+\textcolor{blue}{Why we used the DVFS method:}
+\vspace{-0.49cm}
+\begin{minipage}{0.5\textwidth} 
+    \vspace{-0.49cm} 
+      \begin{itemize} 
+       \item  \small \textcolor{black}{ The CPU is the component that consumes the  highest amount of energy in a node \textsuperscript{1}. }
+               
         \end{itemize}
         \end{itemize}
-\end{block}
 
 
- \vspace{0.1cm}
+    \end{minipage}%
+    \begin{minipage}{0.5\textwidth}
+     \vspace{-0.49cm} 
+    \begin{figure}[h!]
+     \includegraphics[width=0.85\textwidth]{fig/node-power} 
+     
+    \end{figure}
+    \end{minipage}%
+    
+  \begin{itemize} \item \small  \textcolor{black}{DVFS reduces the energy consumption while 
+   keeping all the nodes working.}
+               \item \small \textcolor{black}{It has a very small overhead compared to switching-off the idle nodes.}  \end{itemize} 
+    
+\vspace{-0.12cm}
+
  \begin{block}{\textcolor{white}{Challenge and Objective}}
 
  \begin{block}{\textcolor{white}{Challenge and Objective}}
 
-               \textcolor{blue}{Challenge:} \textcolor{black}{DVFS is used to reduce the energy, \textcolor{blue}{but} it degrades the performance simultaneously.}
+       \small  \textcolor{blue}{Challenge:} \textcolor{black}{DVFS is used to reduce the energy consumption, \textcolor{blue}{but} it degrades the performance simultaneously.}
                
                \vspace{0.1cm}
                
                \vspace{0.1cm}
       \textcolor{blue}{Objective:} \textcolor{black}{Optimizing both energy consumption and performance of a parallel application at the same time when DVFS is used.}
\small         \textcolor{blue}{Objective:} \textcolor{black}{Applying the DVFS to minimize the energy consumption while maintaining the performance of the parallel application.}
 \end{block}
 \end{block}
+ \tiny \textsuperscript{1} Fan, X., Weber, W., and Barroso, L. A. 2007.  Power provisioning
+for a warehouse-sized computer.
 
     \end{frame}
 
 
     \end{frame}
 
 %%%%%%%%%%%%%%%%%%%% 
 
 
 %%%%%%%%%%%%%%%%%%%% 
 
 
-\begin{frame}{Contributions}
-\section{\small {Contributions}}
-\subsection{\small {3.1 Energy optimization of homogeneous platform}}
+\begin{frame}{The first contribution}
+
+\section{\small {Energy optimization of a homogeneous platform}}
+%\vspace{-3cm}
+ % \includegraphics[width=0.6\textwidth]{white.pdf} 
+
 \begin{center}
 \begin{center}
-\bf \textcolor{black}{First contribution} \\ 
-\vspace{1cm}
-\bf  \Large \textcolor{blue}{Energy optimization of homogeneous platform}
+\bf  \Large \textcolor{blue}{Energy optimization of a parallel application with iterations running over a homogeneous platform}
 \end{center}
  \end{frame}
 
 \end{center}
  \end{frame}
 
 \begin{frame}{Objectives}
         \begin{femtoBlock}{} \vspace{-12 mm}
                 \begin{itemize} \small
 \begin{frame}{Objectives}
         \begin{femtoBlock}{} \vspace{-12 mm}
                 \begin{itemize} \small
-                   \item  Study the effect of the scaling factor $S$ on \textbf{energy consumption} of parallel iterative applications such as NAS 
-                          Benchmarks. \includegraphics[width=.06\textwidth]{c1/nasa.pdf} \medskip
-                   \item  Study the effect of the scaling factor $S$ on \textbf{performance} of these benchmarks.\medskip
-                   \item  Discovering the \textbf{energy-performance trade-off relation} when changing the frequency.\medskip
-                   \item  We propose an algorithm for selecting the scaling factor $S$ producing \textbf {optimal trade-off} between the energy and performance. \medskip
-                   \item  Improving Rauber and Rünger's\footnote{\tiny Thomas Rauber and Gudula Rünger. Analytical modeling and simulation of the  
-                          energy consumption \\  \quad ~ ~\quad    of  independent tasks. In Proceedings of the Winter Simulation Conference, 2012.} method that our method best on. 
+                   \item  Study the effect of the scaling factor on the \textbf{energy consumption and performance } of parallel  applications with iterations. \medskip
+                   
+                   \item  Discovering the \textbf{energy-performance trade-off relation} when changing the frequency of the processor.\medskip
+                   \item  Proposing an algorithm for selecting the scaling factor that produces  \textbf {the optimal trade-off} between the energy consumption and the performance. \medskip
+                   \item  Comparing the proposed algorithm to existing methods.
+                   
+                   
+                   %\footnote{\tiny Thomas Rauber and Gudula Rünger. Analytical modeling and simulation of the  
+                          %energy consumption \\  \quad ~ ~\quad    of  independent tasks. In Proceedings of the Winter Simulation Conference, 2012.} method that our method best on. 
                 \end{itemize}
                 \end{itemize}
-                 \let\thefootnote\relax\footnote{}
+                 %\let\thefootnote\relax\footnote{}
           \vspace{-10 mm}
         \end{femtoBlock}      
 \end{frame}
           \vspace{-10 mm}
         \end{femtoBlock}      
 \end{frame}
 %%%%%%%%%%%%%%%%%%%% 
 
 
 %%%%%%%%%%%%%%%%%%%% 
 
 
-\begin{frame}{Parallel tasks execution over Homo. Platform}
+\begin{frame}{Execution of synchronous parallel tasks}
 \vspace{-0.5 cm}
 \begin{figure}
   \centering
 \vspace{-0.5 cm}
 \begin{figure}
   \centering
-  \subfloat[Sync. imbalanced communications]{%
+  \subfloat[Synchronous imbalanced communications]{%
     \includegraphics[scale=0.49]{c1/commtasks}\label{fig:h1}}
     \includegraphics[scale=0.49]{c1/commtasks}\label{fig:h1}}
-  \subfloat[Sync. imbalanced computations]{%
+  \subfloat[Synchronous imbalanced computations]{%
     \includegraphics[scale=0.49]{c1/compt}\label{fig:h2}}
     \includegraphics[scale=0.49]{c1/compt}\label{fig:h2}}
-  \caption{Parallel tasks on homogeneous platform}
% \caption{Parallel tasks on homogeneous platform}
   \label{fig:homo}
 \end{figure}
 
   \label{fig:homo}
 \end{figure}
 
 %%%%%%%%%%%%%%%%%%%%
 %%    SLIDE 11   %%
 %%%%%%%%%%%%%%%%%%%% 
 %%%%%%%%%%%%%%%%%%%%
 %%    SLIDE 11   %%
 %%%%%%%%%%%%%%%%%%%% 
-\begin{frame}{Energy model for homogeneous platform}    
+\begin{frame}{Energy model for homogeneous platform}    
       The power consumed by a processor divided into two power metrics: the dynamic (\textcolor{red}{$P_d$}) and static   
        (\textcolor{red}{$P_s$}) power. 
     \begin{equation}
       The power consumed by a processor divided into two power metrics: the dynamic (\textcolor{red}{$P_d$}) and static   
        (\textcolor{red}{$P_s$}) power. 
     \begin{equation}
 %%    SLIDE 12   %%
 %%%%%%%%%%%%%%%%%%%% 
 
 %%    SLIDE 12   %%
 %%%%%%%%%%%%%%%%%%%% 
 
-\begin{frame}{Energy model for homogeneous platform}
+\begin{frame}{Energy model for homogeneous platform}
        
           The frequency scaling factor is the ratio between the maximum and the new frequency, \textcolor{blue}{$S = \frac{F_{max}}{F_{new}}$}.  \medskip     
               
        
           The frequency scaling factor is the ratio between the maximum and the new frequency, \textcolor{blue}{$S = \frac{F_{max}}{F_{new}}$}.  \medskip     
               
          \left( T_1 + \sum_{i=2}^{N} \frac{T_i^3}{T_1^2} \right) +
             P_{s} \cdot S_1  \cdot T_1 \cdot N$
         \end{block}     
          \left( T_1 + \sum_{i=2}^{N} \frac{T_i^3}{T_1^2} \right) +
             P_{s} \cdot S_1  \cdot T_1 \cdot N$
         \end{block}     
-           \textcolor{blue}{$S_1$}: the max. scaling factor\\ 
-           \textcolor{blue}{$P_{d}$}: the dynamic power\\
-           \textcolor{blue}{$P_{s}$}: the static power\\
-           \textcolor{blue}{$T_I$}: the time of the slower task\\ 
-           \textcolor{blue}{$T_i$}: the time of the other tasks\\ 
-           \textcolor{blue}{$N$}:  the number of  nodes
+           \textcolor{blue}{$S_1$}: the maximum scaling factor.\\ 
+           \textcolor{blue}{$P_{d}$}: the dynamic power.\\
+           \textcolor{blue}{$P_{s}$}: the static power.\\
+           \textcolor{blue}{$T_I$}: the execution time of the slower task.\\ 
+           \textcolor{blue}{$T_i$}: the execution time of task i.\\ 
+           \textcolor{blue}{$N$}:  the number of  nodes.
        
 \end{frame}
   
        
 \end{frame}
   
 %\vspace{-0.3cm}
       \small 
          \begin{block}{\small Our objective function}
 %\vspace{-0.3cm}
       \small 
          \begin{block}{\small Our objective function}
-         \centering{$\textbf{\emph {MaxDist}} = \max_{j=1,2,\dots ,F}             
-                    (\overbrace{P_{Norm}(S_j)}^{{Maximize}} - 
-                     \overbrace{E_{Norm}(S_j)}^{{Minimize}} )$}
+         \centering{$\textbf{\emph {\textcolor{red}{MaxDist}}} = \max_{j=1,2,\dots ,F}             
+                    (\overbrace{P_{Norm}(S_j)}^{{\textcolor{blue}{Maximize}}} - 
+                     \overbrace{E_{Norm}(S_j)}^{{\textcolor{blue}{Minimize}}} )$}
                                          
         \end{block}                
         \end{femtoBlock}
                                          
         \end{block}                
         \end{femtoBlock}
      
      \begin{figure}
   \animategraphics[autopause,controls,scale=0.28,buttonsize=0.2cm]{10}{dvfs-homo/a-}{0}{159}
      
      \begin{figure}
   \animategraphics[autopause,controls,scale=0.28,buttonsize=0.2cm]{10}{dvfs-homo/a-}{0}{159}
-
+  %\includegraphics[width=0.6\textwidth]{dvfs-homo/a-159}
   \end{figure}
 \end{frame}
 
   \end{figure}
 \end{frame}
 
       \begin{femtoBlock}{}      
         \begin{itemize}
          \small
       \begin{femtoBlock}{}      
         \begin{itemize}
          \small
-           \item Our experiments are executed on the simulator SimGrid/SMPI v3.10.\medskip
-           \item Our algorithm is applied to  NAS parallel benchmarks.\medskip
+           \item The experiments were executed on the simulator SimGrid/SMPI v3.10.\medskip
+           \item The proposed algorithm was applied to the NAS parallel benchmarks.\medskip
            \item Each node in the cluster has 18 frequency values from \textbf{2.5$GHz$} to \textbf{800$MHz$}.\medskip
            \item Each node in the cluster has 18 frequency values from \textbf{2.5$GHz$} to \textbf{800$MHz$}.\medskip
-           \item We run the classes A, B and C on 4, 8 or 9 and 16 nodes respectively.\medskip
-           \item The dynamic power with the highest frequency is equal to \textbf{20 $W$} and the power static is equal to \textbf{4 $W$}.
+           \item The proposed algorithm was evaluated over the A, B and C classes of the benchmarks using 4, 8 or 9 and 16 nodes respectively. \medskip
+           \item $P_d=20W$,  $P_s=4W$.
                 \end{itemize}
         \end{femtoBlock}
 \end{frame}
                 \end{itemize}
         \end{femtoBlock}
 \end{frame}
            $S_{opt} = \sqrt[3]{\frac{2}{N} \cdot \frac{P_{dyn}}{P_{static}} \cdot
             \left( 1 + \sum_{i=2}^{N} \frac{T_i^3}{T_1^3}\right) } $
         \end{block}   
            $S_{opt} = \sqrt[3]{\frac{2}{N} \cdot \frac{P_{dyn}}{P_{static}} \cdot
             \left( 1 + \sum_{i=2}^{N} \frac{T_i^3}{T_1^3}\right) } $
         \end{block}   
+        
+        
     \centering {
          %\includegraphics[width=.33\textwidth]{c1/c1.pdf}
          %\qquad
          %\includegraphics[width=.33\textwidth]{c1/c2.pdf}}
            
          
     \centering {
          %\includegraphics[width=.33\textwidth]{c1/c1.pdf}
          %\qquad
          %\includegraphics[width=.33\textwidth]{c1/c2.pdf}}
            
          
-            \includegraphics[width=.55\textwidth]{c1/compare_c.pdf}}
+            \includegraphics[width=.55\textwidth]{c1/compare-c.pdf}}
         
 \end{frame}
 
         
 \end{frame}
 
     \vspace{-0.75cm}     
   \begin{figure}
   \animategraphics[autopause,controls,scale=0.28,buttonsize=0.2cm]{10}{homo-model/a-}{0}{356}
     \vspace{-0.75cm}     
   \begin{figure}
   \animategraphics[autopause,controls,scale=0.28,buttonsize=0.2cm]{10}{homo-model/a-}{0}{356}
+  %\includegraphics[width=0.6\textwidth]{homo-model/a-356}
   \end{figure}
 \end{frame}
 
   \end{figure}
 \end{frame}
 
 %%%%%%%%%%%%%%%%%%%%
 %%    SLIDE 21   %%
 %%%%%%%%%%%%%%%%%%%% 
 %%%%%%%%%%%%%%%%%%%%
 %%    SLIDE 21   %%
 %%%%%%%%%%%%%%%%%%%% 
-\begin{frame}{Comparing the new model with Rauber model }
+\begin{frame}{\large Comparing the new model with Rauber's model }
  \vspace{0.1cm}    
  \centering
     \includegraphics[width=.45\textwidth]{c1/energy_con}
  \vspace{0.1cm}    
  \centering
     \includegraphics[width=.45\textwidth]{c1/energy_con}
 %%%%%%%%%%%%%%%%%%%% 
 
 
 %%%%%%%%%%%%%%%%%%%% 
 
 
-\begin{frame}{Contribution}
+\begin{frame}{The second contribution}
 
 
-\subsection{\small {3.2 Energy optimization of heterogeneous platform}}
+\section{\small {Energy optimization of a heterogeneous platform}}
 \begin{center}
 \begin{center}
-\bf \textcolor{black}{Second contribution} \\ 
-\vspace{1cm}
-\bf  \Large \textcolor{blue}{Energy optimization of Heterogeneous platform}
+
+
+\bf  \Large \textcolor{blue}{Energy optimization of a parallel application with iterations running over a Heterogeneous platform}
 \end{center}
  \end{frame}
  
 \end{center}
  \end{frame}
  
 \begin{frame}{Objectives}
         \begin{femtoBlock}{} \vspace{-12 mm}
                 \begin{itemize} \small
 \begin{frame}{Objectives}
         \begin{femtoBlock}{} \vspace{-12 mm}
                 \begin{itemize} \small
-                  \item   Evaluating the  \textcolor{blue}{new energy and performance models} of message passing  applications with iterations running  
-                          over a heterogeneous platform (cluster and Grid). \medskip
-                   \item  Study the effect of the scaling factor $S$ on both \textcolor{blue}{energy consumption  and the performance} of
+                  \item   Proposing  \textcolor{blue}{new energy and performance models} for message passing  applications with iterations running  
+                          over a heterogeneous platform (cluster or Grid). \medskip
+                   \item  Studying the effect of the scaling factor $S$ on both the \textcolor{blue}{energy consumption  and the performance} of
                           message passing iterative applications.    \medskip                      
                    
                           message passing iterative applications.    \medskip                      
                    
-                   \item  Computing  the vector of scaling factors ($S_1, S_2, ..., S_n$)  producing \textcolor{blue} {optimal trade-off} between
-                           energy consumption and performance. 
+                   \item  Computing  the vector of scaling factors ($S_1, S_2, ..., S_n$)  producing \textcolor{blue} {the optimal trade-off} between
+                          the energy consumption and the performance. 
                 \end{itemize}
                  
           \vspace{-10 mm}
                 \end{itemize}
                  
           \vspace{-10 mm}
 %%    SLIDE 25    %%
 %%%%%%%%%%%%%%%%%%%%
  \begin{frame}{The energy consumption model} 
 %%    SLIDE 25    %%
 %%%%%%%%%%%%%%%%%%%%
  \begin{frame}{The energy consumption model} 
-    -The overall energy consumption of a message passing synchronous distributed application executed over a
-    heterogeneous platform is computed as  follows:
+    The overall energy consumption of a message passing synchronous  application executed over
+     a heterogeneous platform can be computed as  follows:
     \begin{multline}
      \label{eq:energy}
      \textcolor{red}{E} = \textcolor{blue}{\sum_{i=1}^{N} {(S_i^{-2} \cdot Pd_i \cdot  Tcp_i)}} + {} \\
     \begin{multline}
      \label{eq:energy}
      \textcolor{red}{E} = \textcolor{blue}{\sum_{i=1}^{N} {(S_i^{-2} \cdot Pd_i \cdot  Tcp_i)}} + {} \\
   \vspace{-0.5cm}
  \begin{figure}
   \animategraphics[autopause,controls,scale=0.28,buttonsize=0.2cm]{10}{heter-model/a-}{0}{272}
   \vspace{-0.5cm}
  \begin{figure}
   \animategraphics[autopause,controls,scale=0.28,buttonsize=0.2cm]{10}{heter-model/a-}{0}{272}
+  %\includegraphics[width=0.6\textwidth]{heter-model/a-272}
   \end{figure}
  \end{frame}
  
   \end{figure}
  \end{frame}
  
 %%%%%%%%%%%%%%%%%%%%
 %%    SLIDE 27    %%
 %%%%%%%%%%%%%%%%%%%%
 %%%%%%%%%%%%%%%%%%%%
 %%    SLIDE 27    %%
 %%%%%%%%%%%%%%%%%%%%
-\begin{frame}{The trade-off between energy  and performance}
-    \vspace{-7 mm}
-    \begin{figure}
-     \centering{ \includegraphics[width=.4\textwidth]{c2/heter}}
-    \end{figure}
-    \vspace{-7 mm}
-    \textcolor{red}{\underline{Step1}}: computing the normalized energy \textcolor{blue}{$E_{norm} = \frac{E_{reduced}} 
-     {E_{Max}}$}. \\
-     \textcolor{red}{\underline{Step2}}: computing the normalized performance \textcolor{blue}{$P_{norm} = \frac{T_{Max}}{T_{new}}$}.
+%\begin{frame}{The trade-off between energy  and performance}
+   % \vspace{-7 mm}
+    %\begin{figure}
+   %  \centering{ \includegraphics[width=.4\textwidth]{c2/heter}}
+   % \end{figure}
+   % \vspace{-7 mm}
+   % \textcolor{red}{\underline{Step1}}: computing the normalized energy \textcolor{blue}%{$E_{norm} = \frac{E_{reduced}} 
+    %{E_{Max}}$}. \\
+    % \textcolor{red}{\underline{Step2}}: computing the normalized performance \textcolor{blue}{$P_{norm} = \frac{T_{Max}}{T_{new}}$}.
    
    
-     \begin{block}{\small The tradeoff model}
-     \begin{equation}
-      \label{eq:max}
-      \textcolor{red}{MaxDist} =
-      \mathop {\max_{i=1,\dots F}}_{j=1,\dots,N}
-       (\overbrace{P_{norm}(S_{ij})}^{\text{\textcolor{blue}{Maximize}}} -
-       \overbrace{E_{norm}(S_{ij})}^{\text{\textcolor{blue}{Minimize}}} )
-      \end{equation}
-     \end{block}  
-\end{frame}
+   %  \begin{block}{\small The tradeoff model}
+    % \begin{equation}
+    %  \label{eq:max}
+    %  \textcolor{red}{MaxDist} =
+     % \mathop {\max_{i=1,\dots F}}_{j=1,\dots,N}
+      % (\overbrace{P_{norm}(S_{ij})}^{\text{\textcolor{blue}{Maximize}}} -
+      % \overbrace{E_{norm}(S_{ij})}^{\text{\textcolor{blue}{Minimize}}} )
+      %\end{equation}
+    % \end{block}  
+%\end{frame}
    
  
 %%%%%%%%%%%%%%%%%%%%
    
  
 %%%%%%%%%%%%%%%%%%%%
  
   \begin{figure}
   \animategraphics[autopause,controls,scale=0.28,buttonsize=0.2cm]{10}{dvfs-heter/a-}{0}{650}
  
   \begin{figure}
   \animategraphics[autopause,controls,scale=0.28,buttonsize=0.2cm]{10}{dvfs-heter/a-}{0}{650}
+ % \includegraphics[width=0.6\textwidth]{dvfs-heter/a-650}
   \end{figure}
 \end{frame}
 
   \end{figure}
 \end{frame}
 
 %%%%%%%%%%%%%%%%%%%%
 %%    SLIDE 30    %%
 %%%%%%%%%%%%%%%%%%%%
 %%%%%%%%%%%%%%%%%%%%
 %%    SLIDE 30    %%
 %%%%%%%%%%%%%%%%%%%%
-\begin{frame}{Experiments over heterogeneous cluster  }   
+\begin{frame}{Experiments over heterogeneous cluster  }   
         \begin{itemize}
          \small
         \begin{itemize}
          \small
-           \item The experiments executed on the simulator SimGrid/SMPI v3.10.\medskip
+           \item The experiments were executed on the simulator SimGrid/SMPI v3.10.\medskip
            \item The scaling algorithm was applied to the NAS parallel benchmarks class C.\medskip
            \item Four types of processors with different computing powers were used.\medskip
            \item The scaling algorithm was applied to the NAS parallel benchmarks class C.\medskip
            \item Four types of processors with different computing powers were used.\medskip
-           \item We ran the benchmarks on different number of nodes ranging from 4 to 144 nodes.\medskip
-           \item The total power consumption of the chosen CPUs  is composed of $80\%$ for dynamic power and $20\%$ for static power.
+           \item The benchmarks were executed with different number of nodes ranging from 4 to 144 nodes.\medskip
+           \item It was assumed that the total power consumption of the CPU consist of 80\% dynamic power and 20\% static power.
                   \medskip
          
         \end{itemize}
                   \medskip
          
         \end{itemize}
    \centering
     \includegraphics[width=0.8\textwidth]{c2/energy_saving.pdf}
     
    \centering
     \includegraphics[width=0.8\textwidth]{c2/energy_saving.pdf}
     
-    \textcolor{blue}{On average, it saves the energy consumption by \textcolor{red}{29\%} 
-     of NAS benchmarks class C executed over 8 nodes}
+    \textcolor{blue}{On average, it reduces the energy consumption by \textcolor{red}{29\%} 
+     for the class C of the NAS Benchmarks executed over 8 nodes}
     
    \end{figure}
 \end{frame} 
     
    \end{figure}
 \end{frame} 
     
     \includegraphics[width=.8\textwidth]{c2/perf_degra.pdf}
    
     
     \includegraphics[width=.8\textwidth]{c2/perf_degra.pdf}
    
-   \textcolor{blue}{On average, it degrades the performance by \textcolor{red}{3.8\%} 
-     of NAS benchmarks class C executed over 8 nodes}
+   \textcolor{blue}{On average, it degrades  by \textcolor{red}{3.8\%} the performance
+     of NAS Benchmarks class C executed over 8 nodes}
      \end{figure}
 \end{frame} 
  
      \end{figure}
 \end{frame} 
  
 %%%%%%%%%%%%%%%%%%%%
 %%    SLIDE 33    %%
 %%%%%%%%%%%%%%%%%%%%
 %%%%%%%%%%%%%%%%%%%%
 %%    SLIDE 33    %%
 %%%%%%%%%%%%%%%%%%%%
-\begin{frame}{The results of the three powers scenarios}
+\begin{frame}{The results of the three power scenarios}
    \vspace{-5 mm}
    \begin{figure}[!t]
    \centering
    \vspace{-5 mm}
    \begin{figure}[!t]
    \centering
 %%%%%%%%%%%%%%%%%%%%
 %%    SLIDE 34    %%
 %%%%%%%%%%%%%%%%%%%%
 %%%%%%%%%%%%%%%%%%%%
 %%    SLIDE 34    %%
 %%%%%%%%%%%%%%%%%%%%
-\begin{frame}{The comparing our method}
-    The proposed method (MaxDist) was compared to the EDP algorithm that minimizes  the \textcolor{blue}{
-    $\mathit{energy}\times \mathit{delay}$} value.
+\begin{frame}{Comparing the objective function to EDP}
+     
+     EDP is the products between the energy consumption and the delay.
     \vspace{-5 mm}
     \begin{figure}[!t]
     \centering
     \vspace{-5 mm}
     \begin{figure}[!t]
     \centering
 %%%%%%%%%%%%%%%%%%%%
 %%    SLIDE 35    %%
 %%%%%%%%%%%%%%%%%%%%
 %%%%%%%%%%%%%%%%%%%%
 %%    SLIDE 35    %%
 %%%%%%%%%%%%%%%%%%%%
-\begin{frame}{Energy optimization of grid platform} 
-   \begin{figure}[!t]
-    \centering
-             \includegraphics[width=.6\textwidth]{c2/grid5000.pdf}
+%\begin{frame}{Energy optimization of grid platform} 
+  % \begin{figure}[!t]
+   % \centering
+         %    \includegraphics[width=.6\textwidth]{c2/grid5000.pdf}
              
              
-           \small  10 sites distributed over France and Luxembourg
-        \end{figure}
-\end{frame} 
+        %   \small  10 sites distributed over France and Luxembourg
+        %\end{figure}
+%\end{frame} 
 
 
 %%%%%%%%%%%%%%%%%%%%
 %%    SLIDE 36    %%
 %%%%%%%%%%%%%%%%%%%%
 
 
 %%%%%%%%%%%%%%%%%%%%
 %%    SLIDE 36    %%
 %%%%%%%%%%%%%%%%%%%%
- \begin{frame}{Performance, Energy and trade-off models} \small
-  \begin{block}{\small The performance model of grid}
-    \begin{equation}
-  \label{eq:perf}
-  \Tnew = \mathop{\max_{i=1,\dots N}}_{j=1,\dots,M_i}({\TcpOld[ij]} \cdot S_{ij}) 
-  +\mathop{\min_{j=1,\dots,M_h}}  (\Tcm[hj])
-\end{equation}
-    \end{block}   
+\begin{frame}{The grid architecture}
+\begin{center}
+\includegraphics[width=.8\textwidth]{c2/init_freq.pdf}
+\end{center}
+
+ %\begin{frame}{Performance, Energy and trade-off models} \small
+  %\begin{block}{\small The performance model of grid}
+   % \begin{equation}
+  %\label{eq:perf}
+  %\Tnew = \mathop{\max_{i=1,\dots N}}_{j=1,\dots,M_i}({\TcpOld[ij]} \cdot S_{ij}) 
+ % +\mathop{\min_{j=1,\dots,M_h}}  (\Tcm[hj])
+%\end{equation}
+    %\end{block}   
  
  
  
  
- \begin{block}{\small The energy model of grid}\small
-    \begin{equation}
-  \label{eq:energy}
- E = \sum_{i=1}^{N} \sum_{i=1}^{M_i} {(S_{ij}^{-2} \cdot \Pd[ij] \cdot  \Tcp[ij])} +  
- \sum_{i=1}^{N} \sum_{j=1}^{M_i} (\Ps[ij] \cdot \Tnew)
-\end{equation}
-    \end{block}  
-
-\begin{block}{\small The trade-off model of grid}
-\small
-    \begin{equation}
-   \label{eq:max}
-  \MaxDist =
-  \mathop{  \mathop{\max_{i=1,\dots N}}_{j=1,\dots,M_i}}_{k=1,\dots,F_j}
-      (\overbrace{\Pnorm(S_{ijk})}^{\text{Maximize}} -
-       \overbrace{\Enorm(S_{ijk})}^{\text{Minimize}} )
-\end{equation}
-    \end{block}  
+ %\begin{block}{\small The energy model of grid}\small
+  %  \begin{equation}
+  %\label{eq:energy}
+ %E = \sum_{i=1}^{N} \sum_{i=1}^{M_i} {(S_{ij}^{-2} \cdot \Pd[ij] \cdot  \Tcp[ij])} +  
+% \sum_{i=1}^{N} \sum_{j=1}^{M_i} (\Ps[ij] \cdot \Tnew)
+%\end{equation}
+   % \end{block}  
+
+%\begin{block}{\small The trade-off model of grid}
+%\small
+    %\begin{equation}
+   %\label{eq:max}
+  %\MaxDist =
+  %\mathop{  \mathop{\max_{i=1,\dots N}}_{j=1,\dots,M_i}}_{k=1,\dots,F_j}
+   %   (\overbrace{\Pnorm(S_{ijk})}^{\text{Maximize}} -
+    %   \overbrace{\Enorm(S_{ijk})}^{\text{Minimize}} )
+%\end{equation}
+   % \end{block}  
+     
      
  \end{frame}
   
      
  \end{frame}
   
 %%    SLIDE 37    %%
 %%%%%%%%%%%%%%%%%%%%
  \begin{frame}{Experiments over Grid'5000}
 %%    SLIDE 37    %%
 %%%%%%%%%%%%%%%%%%%%
  \begin{frame}{Experiments over Grid'5000}
-  \centering
-
+   \textcolor{blue}{The experiments were conducted using three 
+          clusters distributed over one or two sites.}
+           \vspace{-7 mm}
+          \begin{center}
           \includegraphics[width=.5\textwidth]{c2/grid5000-2.pdf}
           \includegraphics[width=.5\textwidth]{c2/grid5000-2.pdf}
-          
-          \vspace{-3 mm}
-          \textcolor{blue}{The experiments executed over one site and two sites scenarios}
-          
-              \vspace{1mm}
-
+          \end{center}          
+      \vspace{-10 mm}
+  \textcolor{blue}{Grid'5000 power measurement tools were used.} 
+        \vspace{-9 mm}
+  \begin{center}
           \includegraphics[width=.5\textwidth]{c2/power_consumption.pdf}
           \includegraphics[width=.5\textwidth]{c2/power_consumption.pdf}
+          \end{center}
           
           
-        \textcolor{blue}{We used Grid'5000 power measurement tools} 
+      
 \end{frame}   
 
 
 \end{frame}   
 
 
 \begin{frame}{Experiments over Grid'5000}
 
    \begin{minipage}{0.4\textwidth}
 \begin{frame}{Experiments over Grid'5000}
 
    \begin{minipage}{0.4\textwidth}
-       \textcolor{blue}{Execution the NAS class D on 16 nodes saves the energy by  
-        \textcolor{red}{30\%}}
+       %\textcolor{blue}{Execution the NAS class D on 16 nodes saves the energy by  
+        %\textcolor{red}{30\%}}
+     \small \textcolor{blue}{The average energy saving =  \textcolor{red}{30\%}}
    \end{minipage}  
      \begin{minipage}{0.55\textwidth}
         \begin{figure}[h!]
    \end{minipage}  
      \begin{minipage}{0.55\textwidth}
         \begin{figure}[h!]
 \end{minipage}
 
          \begin{minipage}{0.4\textwidth}
 \end{minipage}
 
          \begin{minipage}{0.4\textwidth}
-           \textcolor{blue}{Execution the NAS class D on 16 nodes degrades the 
-                performance by \textcolor{red}{3.2\%}}
+           %\textcolor{blue}{Execution the NAS class D on 16 nodes degrades the 
+                %performance by \textcolor{red}{3.2\%}}
+      \small  \textcolor{blue}{The average performance degradation  =  \textcolor{red}{3.2\%}}  
         \end{minipage}
        \begin{minipage}{0.55\textwidth}
          \begin{figure}[h!] 
         \end{minipage}
        \begin{minipage}{0.55\textwidth}
          \begin{figure}[h!] 
   \includegraphics[width=.48\textwidth]{c2/per_d_mc.eps}
   \end{figure} 
   
   \includegraphics[width=.48\textwidth]{c2/per_d_mc.eps}
   \end{figure} 
   
-  \centering \small \textcolor{blue}{Using multi-core per node scenario decreases the computations to communications ratio}.
+  \centering \small \textcolor{blue}{Using multi-cores per node scenario decreases the computations to communications ratio}.
 \end{frame}
 
 
 \end{frame}
 
 
 %%%%%%%%%%%%%%%%%%%%
 %%    SLIDE 40    %%
 %%%%%%%%%%%%%%%%%%%%
 %%%%%%%%%%%%%%%%%%%%
 %%    SLIDE 40    %%
 %%%%%%%%%%%%%%%%%%%%
-\begin{frame}{Continuation}
-\subsection{\small {3.3 Energy optimization of asynchronous applications}}
+\begin{frame}{The third contribution}
+\section{\small {Energy optimization of asynchronous applications}}
 \begin{center}
 \begin{center}
-\bf \textcolor{black}{Third contribution} \\ 
-\vspace{1cm}
-\bf  \Large \textcolor{blue}{Energy optimization of asynchronous applications}
+\bf  \Large \textcolor{blue}{Energy optimization of asynchronous iterative message passing  applications}
 \end{center}
  \end{frame}
 
 \end{center}
  \end{frame}
 
 %%    SLIDE 41   %%
 %%%%%%%%%%%%%%%%%%%%
 \begin{frame}{Problem definition}\vspace{0.8 mm}
 %%    SLIDE 41   %%
 %%%%%%%%%%%%%%%%%%%%
 \begin{frame}{Problem definition}\vspace{0.8 mm}
-\textcolor{blue}{Execution the parallel iterative application with synchronous communications }
+\textcolor{blue}{The execution of a synchronous parallel iterative application over a grid }
 \vspace{-8 mm}
 \begin{figure}
 \vspace{-8 mm}
 \begin{figure}
-  \animategraphics[autopause,controls,scale=0.25,buttonsize=0.2cm]{10}{syn/a-}{0}{503}
+ \animategraphics[autopause,controls,scale=0.25,buttonsize=0.2cm]{10}{syn/a-}{0}{503}
+ %\includegraphics[width=0.6\textwidth]{syn/a-503}
   \end{figure}
 \end{frame}
 
   \end{figure}
 \end{frame}
 
 %%    SLIDE 42   %%
 %%%%%%%%%%%%%%%%%%%%
 \begin{frame}{Problem definition}\vspace{0.8 mm}
 %%    SLIDE 42   %%
 %%%%%%%%%%%%%%%%%%%%
 \begin{frame}{Problem definition}\vspace{0.8 mm}
-\textcolor{blue}{Execution the parallel iterative application with synchronous communications }
+\textcolor{blue}{The execution of an asynchronous parallel iterative application over a grid }
 \vspace{-8 mm}
 \begin{figure}
 \vspace{-8 mm}
 \begin{figure}
-  \animategraphics[autopause,controls,scale=0.25,buttonsize=0.2cm]{10}{asyn/a-}{0}{440}
+ \animategraphics[autopause,controls,scale=0.25,buttonsize=0.2cm]{10}{asyn/a-}{0}{440}
+ %\includegraphics[width=0.6\textwidth]{asyn/a-440}
   \end{figure}
 \end{frame}
 
   \end{figure}
 \end{frame}
 
 \vspace{-8 mm}
 \begin{figure}
   \animategraphics[autopause,controls,scale=0.25,buttonsize=0.2cm]{10}{asyn+dvfs/a-}{0}{314}
 \vspace{-8 mm}
 \begin{figure}
   \animategraphics[autopause,controls,scale=0.25,buttonsize=0.2cm]{10}{asyn+dvfs/a-}{0}{314}
+  %\includegraphics[width=0.6\textwidth]{asyn+dvfs/a-314}
   \end{figure}
 \end{frame}
 
   \end{figure}
 \end{frame}
 
 %%%%%%%%%%%%%%%%%%%%
 %%    SLIDE 44   %%
 %%%%%%%%%%%%%%%%%%%%
 %%%%%%%%%%%%%%%%%%%%
 %%    SLIDE 44   %%
 %%%%%%%%%%%%%%%%%%%%
-\begin{frame}{The performance models}
+%\begin{frame}{The performance models}
 
 
-\begin{block}{\small The performance model of Asynch. Applications}\small
-\begin{equation}
-  \label{eq:asyn_time}
 \Tnew =  \frac{\sum_{i=1}^{N} \sum_{j=1}^{M_i}({\TcpOld[ij]} \cdot S_{ij})} {N  \cdot M_i }
-\end{equation}
-\end{block}
+%\begin{block}{\small The performance model of Asynch. Applications}\small
+%\begin{equation}
+  %\label{eq:asyn_time}
%\Tnew =  \frac{\sum_{i=1}^{N} \sum_{j=1}^{M_i}({\TcpOld[ij]} \cdot S_{ij})} {N  \cdot M_i }
+%\end{equation}
+%\end{block}
 
 
 
 
-\begin{block}{\small The performance model of Hybrid Applications}\small
-\begin{equation}
-  \label{eq:asyn_perf}
-  \Tnew =  \frac{\sum_{i=1}^{N} (\max_{j=1,\dots, M_i} ({\TcpOld[ij]} \cdot S_{ij}) +  
-   \min_{j=1,\dots,M_i} ({\Ltcm[ij]}))}{N}
-\end{equation}
-\end{block}
+%\begin{block}{\small The performance model of Hybrid Applications}\small
+%\begin{equation}
+  %\label{eq:asyn_perf}
+  %\Tnew =  \frac{\sum_{i=1}^{N} (\max_{j=1,\dots, M_i} ({\TcpOld[ij]} \cdot S_{ij}) +  
+   %\min_{j=1,\dots,M_i} ({\Ltcm[ij]}))}{N}
+%\end{equation}
+%\end{block}
 
 
 
 
-\end{frame}
+%\end{frame}
 
 
 
 %%%%%%%%%%%%%%%%%%%%
 %%    SLIDE 45   %%
 %%%%%%%%%%%%%%%%%%%%
 
 
 
 %%%%%%%%%%%%%%%%%%%%
 %%    SLIDE 45   %%
 %%%%%%%%%%%%%%%%%%%%
-\begin{frame}{The energy consumption models}
+%\begin{frame}{The energy consumption models}
 
 
-\begin{block}{\small The energy model of Asynch. Applications}\small
-\begin{equation}
-  \label{eq:asyn_energy1}
- E = \sum_{i=1}^{N} \sum_{j=1}^{M_i} {(S_{ij}^{-2} \cdot  \Tcp[ij] \cdot (\Pd[ij]+\Ps[ij]) )} 
-\end{equation} 
-\end{block}
+%\begin{block}{\small The energy model of Asynch. Applications}\small
+%\begin{equation}
+  %\label{eq:asyn_energy1}
+% E = \sum_{i=1}^{N} \sum_{j=1}^{M_i} {(S_{ij}^{-2} \cdot  \Tcp[ij] \cdot (\Pd[ij]+\Ps[ij]) )} 
+%\end{equation} 
+%\end{block}
 
 
 
 
-\begin{block}{\small The energy model of Hybrid Applications}\small
-\begin{multline}
-  \label{eq:asyn_energy}
- E = \sum_{i=1}^{N} \sum_{j=1}^{M_i} {(S_{ij}^{-2} \cdot \Pd[ij] \cdot  \Tcp[ij])} +  \sum_{i=1}^{N} \sum_{j=1}^{M_i} (\Ps[ij] \cdot \\
- ( \mathop{\max_{j=1,\dots,M_i}} ({\Tcp[ij]} \cdot S_{ij}) + \mathop{\min_{j=1,\dots,M_i}} ({\Ltcm[ij]}))) 
-\end{multline}
-\end{block}
+%\begin{block}{\small The energy model of Hybrid Applications}\small
+%\begin{multline}
+  %\label{eq:asyn_energy}
+ %E = \sum_{i=1}^{N} \sum_{j=1}^{M_i} {(S_{ij}^{-2} \cdot \Pd[ij] \cdot  \Tcp[ij])} +  \sum_{i=1}^{N} \sum_{j=1}^{M_i} (\Ps[ij] \cdot \\
+% ( \mathop{\max_{j=1,\dots,M_i}} ({\Tcp[ij]} \cdot S_{ij}) + \mathop{\min_{j=1,\dots,M_i}} ({\Ltcm[ij]}))) 
+%\end{multline}
+%\end{block}
+%\end{frame}
+
+
+
+%%%%%%%%%%%%%%%%%%%%
+%%    SLIDE 44   %%
+%%%%%%%%%%%%%%%%%%%%
+\begin{frame}{The performance and the energy models }
+
+\centering
+\includegraphics[width=0.9\textwidth]{syn-vs-asyn.pdf}
 \end{frame}
 
 
 
 \end{frame}
 
 
 
+
+
 %%%%%%%%%%%%%%%%%%%%
 %%    SLIDE 46   %%
 %%%%%%%%%%%%%%%%%%%%
 %%%%%%%%%%%%%%%%%%%%
 %%    SLIDE 46   %%
 %%%%%%%%%%%%%%%%%%%%
 %%%%%%%%%%%%%%%%%%%%
 %%    SLIDE 47   %%
 %%%%%%%%%%%%%%%%%%%%
 %%%%%%%%%%%%%%%%%%%%
 %%    SLIDE 47   %%
 %%%%%%%%%%%%%%%%%%%%
-\begin{frame}{The experimental results}
+\begin{frame}{The experiments}
    \vspace{-5 mm}
    \begin{figure}[!t]
    \vspace{-5 mm}
    \begin{figure}[!t]
-   \centering
+   \begin{itemize}
+      \small
+        \item The architecture of the grid:
+   \end{itemize}
     \includegraphics[width=0.5\textwidth]{c3/hybrid-model.pdf} 
    \end{figure}
    \begin{itemize}
       \small
     \includegraphics[width=0.5\textwidth]{c3/hybrid-model.pdf} 
    \end{figure}
    \begin{itemize}
       \small
-        \item Execution the iterative multi-splitting method over simulated Grid.
-        \item Execution the iterative multi-splitting method over Grid'5000 test-bed.
+        \item Applying the proposed algorithm to the asynchronous iterative message passing multi-splitting method.
+        \item Evaluating the application over the simulator and Grid'5000.
    \end{itemize}
 \end{frame} 
 
    \end{itemize}
 \end{frame} 
 
 %%    SLIDE 48   %%
 %%%%%%%%%%%%%%%%%%%%
 \begin{frame}{The simulation results}
 %%    SLIDE 48   %%
 %%%%%%%%%%%%%%%%%%%%
 \begin{frame}{The simulation results}
-\centering \small \textcolor{blue}{The best scenario in term of energy and performance  is the Async. MS with Sync. DVFS}
+\centering \small \textcolor{blue}{The best scenario in terms of energy and performance  is the Async. MS with Sync. DVFS}
 
 \centering
 
 \centering
-    \includegraphics[scale=0.46]{c3/energy_saving.eps}
+    \includegraphics[scale=0.42]{c3/energy_saving.eps}
 
 
- \centering  The average of energy saving  = \textcolor{red}{22\%}
+ \centering  The average energy saving  = \textcolor{red}{22\%}
 \end{frame} 
 
 
 \end{frame} 
 
 
 \begin{frame}{The simulation results}
 \centering
    
 \begin{frame}{The simulation results}
 \centering
    
-     \includegraphics[scale=0.46]{c3/perf_degra.eps}
+     \includegraphics[scale=0.42]{c3/perf_degra.eps}
      
      
- \centering    The average of  speed-up  = \textcolor{red}{5.72\%}
+ \centering    The average speed-up  = \textcolor{red}{5.72\%}
 \end{frame} 
 
 
 \end{frame} 
 
 
     \includegraphics[width=0.53\textwidth]{c3/perf-deg-compare.eps}
    \end{figure}
     \vspace{-5 mm}
     \includegraphics[width=0.53\textwidth]{c3/perf-deg-compare.eps}
    \end{figure}
     \vspace{-5 mm}
-     \centering
-   The energy saving = \textcolor{red}{26.93\%}, speeds up =  \textcolor{red}{21.48\%}
+     \centering \footnotesize
+The average energy saving = \textcolor{red}{26.93\%}, the average speed-up =  \textcolor{red}{21.48\%}
 \end{frame} 
 
 
 \end{frame} 
 
 
 %%    SLIDE 52  %%
 %%%%%%%%%%%%%%%%%%%%
 \begin{frame}{Conclusions}
 %%    SLIDE 52  %%
 %%%%%%%%%%%%%%%%%%%%
 \begin{frame}{Conclusions}
-\section{Conclusions}
+\section{Conclusions and Perspectives}
 \begin{itemize}
 
 \begin{itemize}
 
-\small  \barrow  We have proposed \textcolor{blue}{a new energy consumption and performance} models for 
-     synchronous and asynchronous parallel applications with iterations.
-     
+\small  \barrow  Three \textcolor{blue}{ new energy consumption and performance} models were proposed for synchronous or asynchronous parallel applications with iterations running over 
+\textcolor{blue}{homogeneous and  heterogeneous clusters or grids}.  
       
       
-\small \barrow The parallel applications with iterations were executed over different parallel architectures such as: \textcolor{blue}{homogeneous  cluster, heterogeneous  cluster and
-grid}.
 
 
-\small \barrow We have proposed \textcolor{blue}{new objective function} to optimize both the energy consumption and the performance.
+
+\small \barrow \textcolor{blue}{A new objective function} to optimize both the energy consumption and the performance was proposed.
 
 \small \barrow \textcolor{blue}{New online frequency selecting algorithms} for clusters and grids were developed.
 
 \small \barrow The proposed algorithms were applied to the \textcolor{blue}{NAS parallel benchmarks} and \textcolor{blue}{the
 Multi-splitting} method.
 
 
 \small \barrow \textcolor{blue}{New online frequency selecting algorithms} for clusters and grids were developed.
 
 \small \barrow The proposed algorithms were applied to the \textcolor{blue}{NAS parallel benchmarks} and \textcolor{blue}{the
 Multi-splitting} method.
 
-\small \barrow The proposed algorithms were evaluated over the \textcolor{blue}{SimGrid simulator and over  Grid'5000 testbed}.
+\small \barrow The proposed algorithms were evaluated over the \textcolor{blue}{SimGrid simulator} and over  the \textcolor{blue}{Grid'5000 testbed}.
 
 
-\small  \barrow All the proposed methods were compared with either \textcolor{blue}{Rauber and Rünger  method} or  \textcolor{blue}{EDP objective function}.
+\small  \barrow All the proposed methods were compared to either \textcolor{blue}{Rauber and Rünger's  method} or to the \textcolor{blue}{EDP objective function}.
 
 
 \end{itemize}
 
 
 \end{itemize}
@@ -1085,7 +1113,7 @@ Multi-splitting} method.
 %%%%%%%%%%%%%%%%%%%%
 %%    SLIDE 53   %%
 %%%%%%%%%%%%%%%%%%%%
 %%%%%%%%%%%%%%%%%%%%
 %%    SLIDE 53   %%
 %%%%%%%%%%%%%%%%%%%%
-\begin{frame}{Publication}
+\begin{frame}{Publications}
 
 \begin{block}{\small Journal Articles }\scriptsize
 \begin{enumerate}[$\lbrack$1$\rbrack$]
 
 \begin{block}{\small Journal Articles }\scriptsize
 \begin{enumerate}[$\lbrack$1$\rbrack$]
@@ -1126,11 +1154,10 @@ Multi-splitting} method.
 %%    SLIDE 54   %%
 %%%%%%%%%%%%%%%%%%%%
 \begin{frame}{Perspectives}
 %%    SLIDE 54   %%
 %%%%%%%%%%%%%%%%%%%%
 \begin{frame}{Perspectives}
-\section{Perspectives}
 
 \begin{itemize}
 
 
 \begin{itemize}
 
-\small  \barrow We will adapt the proposed algorithms to take into consideration the
+\small  \barrow The proposed algorithms should  take into consideration the
 \textcolor{blue}{variability between some iterations}.
 
 \small  \barrow The proposed algorithms should be applied to \textcolor{blue}{other message passing methods with iterations} in order to see how they adapt to the characteristics of these methods.
 \textcolor{blue}{variability between some iterations}.
 
 \small  \barrow The proposed algorithms should be applied to \textcolor{blue}{other message passing methods with iterations} in order to see how they adapt to the characteristics of these methods.
@@ -1147,7 +1174,7 @@ Multi-splitting} method.
 %%%%%%%%%%%%%%%%%%%%
 \begin{frame}{Fin} \vspace{-10 mm}
 
 %%%%%%%%%%%%%%%%%%%%
 \begin{frame}{Fin} \vspace{-10 mm}
 
-            \centering \Large \textcolor{blue}{Thanks for Your Listening}
+            \centering \Large \textcolor{blue}{Thank you for your listening}
             
             \vspace{2cm}
             \centering \textcolor{blue}{ {\Large Questions?}}
             
             \vspace{2cm}
             \centering \textcolor{blue}{ {\Large Questions?}}