-CG & Conjugate Gradiant & \begin{tabular}[c]{@{}l@{}}Estimate the smallest eigenvalue of a large \\ sparse symmetric positive-definite matrix \\ using the inverse iteration with the conjugate \\ gradient method as a subroutine for solving \\ systems of linear equations\end{tabular} \\ \hline
-MG & MultiGrid & \begin{tabular}[c]{@{}l@{}}Approximate the solution to a three-dimensional \\ discrete Poisson equation using the V-cycle \\ multigrid method\end{tabular} \\ \hline
-EP & Embarrassingly Parallel & \begin{tabular}[c]{@{}l@{}}Generate independent Gaussian random \\ variates using the Marsaglia polar method\end{tabular} \\ \hline
-FT & Fast Fourier Transform & \begin{tabular}[c]{@{}l@{}}Solve a three-dimensional partial differential\\ equation (PDE) using the fast Fourier transform \\ (FFT)\end{tabular} \\ \hline
-BT & Block Tridiagonal & \multirow{3}{*}{\begin{tabular}[c]{@{}l@{}}Solve a synthetic system of nonlinear PDEs \\ using three different algorithms involving \\ block tridiagonal, scalar pentadiagonal and \\ symmetric successive over-relaxation \\ (SSOR) solver kernels, respectively\end{tabular}} \\ \cline{1-2}
+CG & Conjugate Gradiant & \begin{tabular}[c]{@{}l@{}}
+It solves a system of linear equations by estimating\\ the smallest eigenvalue of a large sparse matrix \end{tabular}\\ \hline
+
+MG & MultiGrid & \begin{tabular}[c]{@{}l@{}}It uses the multigrid method to approximate the solution \\of a three-dimensional discrete Poisson equation\end{tabular}
+ \\ \hline
+EP & Embarrassingly Parallel & \begin{tabular}[c]{@{}l@{}} It applies the Marsaglia polar method to randomly \\generates independent Gaussian variates
+\end{tabular} \\ \hline
+FT & Fast Fourier Transform & \begin{tabular}[c]{@{}l@{}}It uses the fast Fourier transform to solve a \\ three-dimensional partial differential equation
+
+\end{tabular} \\ \hline
+BT & Block Tridiagonal & \multirow{3}{*}{\begin{tabular}[c]{@{}l@{}} \\They solve nonlinear partial differential equations \end{tabular}} \\ \cline{1-2}