-To fairly compare the HSA algorithm with the algorithm of Spiliopoulos et al., the same energy models, Equation (\ref{eq:energy-grid}) or (\ref{eq:asyn_energy}), and execution time models, Equation (\ref{eq:perf-grid}) or (\ref{eq:asyn_perf}), are used to predict the energy consumptions and the execution times.
-
-The EDP objective function can be equal to zero when the predicted delay is equal to zero. Moreover, this product is equal to zero before applying any DVFS operation. To eliminate the zero values, the EDP function must take the following form:
-
-
-\begin{equation}
- \label{eq:EDP}
- EDP = E_{Norm} \times (1+ D_{Norm})
-\end{equation}
-where $E_{Norm}$ is the normalized energy consumption which is computed as in Equation (\ref{eq:enorm})
-and $D_{Norm}$ is the normalized delay of the execution time which is computed as follows:
-\begin{equation}
- \label{eq:Dnorm}
- D_{Norm}= 1 -P_{Norm}= 1- (\frac{T_{old}}{T_{new}})
-\end{equation}
-Where $P_{Norm}$ is computed as in Equation (\ref{eq:pnorm}). Furthermore, the EDP algorithm starts the search process from the initial frequencies that are computed as in Equation (\ref{eq:Fint}). It stops the search process when it reaches the minimum available frequency for each processor. The EDP algorithm was applied to the synchronous and asynchronous MS algorithm solving a 3D problem of size $400^3$. Two platform scenarios, Grid 4*4 and Grid 4*8, were chosen for this experiment. The EDP method was applied synchronously and asynchronously to the MS application as for the HSA algorithm. The comparison results of the EDP and HSA algorithms are presented in the Figures \ref{fig:compare_syndvfs_synms}, \ref{fig:compare_asyndvfs_asynms},\ref{fig:compare_asyndvfs_synms} and \ref{fig:compare_asyndvfs_asynms}. Each of these figures presents the energy saving, performance degradation and distance percentages for one version of the MS algorithm. The results shown in these figures are also the average of the results obtained from running each version of the MS method over the two platform scenarios described above.
-
-
-
-
-\begin{figure}[!h]