-Nowadays, this idea is no longer valid because the recent release of the microprocessors have many computing units embedded in one chip and these programs are only run over one computing unit sequentially.
-Consequently, traditional applications have not improved their performance a lot over the new architectures, whereas the new applications run faster over them in a parallel. The parallel application is executed over all available computing units at the same time to improve its performance. Furthermore, the concurrency revolution has been referred to the drastically improvement in the performance of new applications side by side to new parallel architectures \cite{ref51}. Therefore, parallel applications and parallel architectures are closely tied together. It is hard to think about any of parallel applications without thinking of the parallel hardware executed them.
-For example, the energy consumption of the parallel system mainly depends on both of the parallel application and the parallel architecture executes this application. Indeed, an energy consumption model or any measurement system depends on many specifications, some of them are concerning parallel hardware features such as the frequency of the processor, the power consumption of the processor and the communication model. The others are concerning the parallel application such as the computation and communication times of the application.
+Nowadays, this idea is no longer valid because the recent releases of the microprocessors have many computing units embedded in one chip and these programs are only run over one computing unit sequentially.
+Consequently, traditional applications have not improved their performance a lot over the new architectures, whereas the new applications run faster over them in a parallel. The parallel application is executed over all available computing units at the same time to improve its performance. Furthermore, the concurrency revolution has been referred to the drastic improvement in the performance of new applications side by side to new parallel architectures \cite{ref51}. Therefore, parallel applications and parallel architectures are closely tied together. It is hard to think about any of parallel applications without thinking of the parallel hardware executed them.
+For example, the energy consumption of a parallel system mainly depends on both of the parallel applications and the parallel architectures execute these applications. Indeed, an energy consumption model or any measurement system depends on many specifications, some of them are concerning parallel hardware features such as the frequency of the processor, the power consumption of the processor and the communication model. The others are concerned the parallel application such as the computation and communication times of the application.