]> AND Private Git Repository - ThesisAhmed.git/blobdiff - thesis-presentation/AhmedSlides.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
addind the presentation corrections
[ThesisAhmed.git] / thesis-presentation / AhmedSlides.tex
index 0a61337a4ef56765b89adfd1dedc3687e540ef54..2a57d28c6b77ecb4a5e766fa6b1eb06b6d8fde9e 100644 (file)
 \tableofcontents
 \end{frame}
 
-
 %%%%%%%%%%%%%%%%%%%%
 %%    SLIDE 03    %%
 %%%%%%%%%%%%%%%%%%%% 
 \begin{frame}{Introduction and problem definition}
- \section{\small {Introduction and Problem definition}}
-   \bf \textcolor{blue}{To get more computing power:}
+\section{\small {Introduction and Problem definition}}
+ \centering
+ \includegraphics[width=0.99\textwidth]{para.pdf} 
+\end{frame}
+
+
+
+
+\begin{frame}{Execution of synchronous parallel tasks}
+\vspace{-0.5 cm}
+\begin{figure}
+  \centering
+  \subfloat[Synchronous imbalanced communications]{%
+    \includegraphics[scale=0.49]{c1/commtasks}\label{fig:h1}}
+  \subfloat[Synchronous imbalanced computations]{%
+    \includegraphics[scale=0.49]{c1/compt}\label{fig:h2}}
+ % \caption{Parallel tasks on homogeneous platform}
+  \label{fig:homo}
+\end{figure}
+
+ \end{frame}
+%%%%%%%%%%%%%%%%%%%%
+%%    SLIDE 07   %%
+%%%%%%%%%%%%%%%%%%%% 
+
+
+\begin{frame}{\large Synchronous and asynchronous iterative methods }
+\vspace{-0.5 cm}
+\begin{figure}
+
+\includegraphics[scale=0.42]{syn_tasks.pdf}
+\vspace{0.6 cm}
+\includegraphics[scale=0.42]{Asyn_tasks.pdf}
+\end{figure}
+
+ \end{frame}
+ %%%%%%%%%%%%%%%%%%%%
+%%    SLIDE 03    %%
+%%%%%%%%%%%%%%%%%%%% 
+\begin{frame}{Approaches to get more computing power}
+   %\bf \textcolor{blue}{}
      \begin{minipage}{0.5\textwidth} 
       \textcolor{blue}{1)} \small  \bf \textcolor{black}{Increase the frequency of a  processor.\\ (limited due to overheating)}
     \end{minipage}%
     \end{minipage}%
     \vspace{0.2cm}
     \begin{minipage}{0.5\textwidth} 
-     \textcolor{blue}{2)} \small \bf \textcolor{black}{Use more nodes.}
+     \textcolor{blue}{2)} \small \bf \textcolor{black}{Increase the number of nodes.}
      
  \textcolor{black}{The supercomputer Tianhe-2 has more than 3 million cores and consumes around 17.8 megawatts.}  
           
  
  
  
-
  %%%%%%%%%%%%%%%%%%%
 %%    SLIDE 04   %%
 %%%%%%%%%%%%%%%%%%%% 
      \textcolor{blue}{1)} \bf \textcolor{black}{Switch-off idle nodes method}  
     \vspace{-0.9cm}
     \begin{figure}
-     \animategraphics[autopause,loop,controls,scale=0.25,buttonsize=0.2cm]{200}{on-off/a-}{0}{69}
+     \animategraphics[autopause,controls,scale=0.26,buttonsize=0.2cm]{200}{on-off/a-}{0}{111}
      %\includegraphics[width=0.6\textwidth]{on-off/a-69}
     \end{figure}
  \end{frame}
   \textcolor{blue}{2)} \bf \textcolor{black}{Dynamic Voltage and Frequency Scaling (DVFS)}
      \vspace{-0.9cm}
     \begin{figure}
-    \animategraphics[autopause,controls,scale=0.25,buttonsize=0.2cm]{10}{DVFS-meq/a-}{0}{109}
+    \animategraphics[autopause,controls,scale=0.26,buttonsize=0.2cm]{10}{DVFS-meq/a-}{0}{175}
      %\includegraphics[width=0.6\textwidth]{DVFS-meq/a-109}
     \end{figure}
     \end{frame}
  
-
-
 %%%%%%%%%%%%%%%%%%%%
-%%    SLIDE 06    %%
+%%    SLIDE 06   %%
+%%%%%%%%%%%%%%%%%%%% 
+%%%%%%%%%%%%%%%%%%%%
+%%    SLIDE 07    %%
 %%%%%%%%%%%%%%%%%%%% 
 \begin{frame}{Motivations}
 \vspace{0.05cm}
@@ -242,7 +289,7 @@ for a warehouse-sized computer.
         
                 \begin{itemize}   \small \justifying
                  
-                   \item   Study the effect of the scaling factor on the \textbf{energy consumption and performance } of parallel  applications with iterations. \medskip
+                   \item   Studying the effect of the scaling factor on the \textbf{energy consumption and performance } of parallel  applications with iterations. \medskip
                    
                    \item   Discovering the \textbf{energy-performance trade-off relation} when changing the frequency of the processor.\medskip
                    \item   Proposing an algorithm for selecting the scaling factor that produces  \textbf {the optimal trade-off} between the energy consumption and the performance. \medskip
@@ -259,24 +306,7 @@ for a warehouse-sized computer.
 
 
 
-%%%%%%%%%%%%%%%%%%%%
-%%    SLIDE 10    %%
-%%%%%%%%%%%%%%%%%%%% 
-
-
-\begin{frame}{Execution of synchronous parallel tasks}
-\vspace{-0.5 cm}
-\begin{figure}
-  \centering
-  \subfloat[Synchronous imbalanced communications]{%
-    \includegraphics[scale=0.49]{c1/commtasks}\label{fig:h1}}
-  \subfloat[Synchronous imbalanced computations]{%
-    \includegraphics[scale=0.49]{c1/compt}\label{fig:h2}}
- % \caption{Parallel tasks on homogeneous platform}
-  \label{fig:homo}
-\end{figure}
 
- \end{frame}
  
  
  
@@ -285,7 +315,7 @@ for a warehouse-sized computer.
 %%    SLIDE 11   %%
 %%%%%%%%%%%%%%%%%%%% 
 \begin{frame}{Energy model for a homogeneous platform}    
-      The power consumed by a processor divided into two power metrics: the dynamic (\textcolor{red}{$P_d$}) and static   
+      The power consumed by a processor is divided into two power metrics: the dynamic (\textcolor{red}{$P_d$}) and  the static   
        (\textcolor{red}{$P_s$}) power. 
     \begin{equation}
      \label{eq:pd}
@@ -302,6 +332,8 @@ for a warehouse-sized computer.
        \scriptsize{ \textcolor{blue}{$V$}: the supply voltage.  \hspace{28 mm}   \textcolor{blue}{$N_{trans}$}: number of transistors. \\   
        \textcolor{blue}{$K_{design}$}: design dependent parameter. \hspace{8 mm} \textcolor{blue}{$I_{leak}$}: technology dependent  
             parameter.} 
+            
+            The frequency scaling factor is the ratio between the maximum and the new frequency, \textcolor{blue}{$S = \frac{F_{max}}{F_{new}}$}.
 \end{frame}
 
 %%%%%%%%%%%%%%%%%%%%
@@ -309,22 +341,25 @@ for a warehouse-sized computer.
 %%%%%%%%%%%%%%%%%%%% 
 
 \begin{frame}{Energy model for a homogeneous platform}
-       
-          The frequency scaling factor is the ratio between the maximum and the new frequency, \textcolor{blue}{$S = \frac{F_{max}}{F_{new}}$}.  \medskip     
-              
-              
+       \vspace{-0.77cm}
+            \begin{figure}
+  \animategraphics[autopause,controls,scale=0.3,buttonsize=0.2cm]{10}{homo-model/a-}{0}{441}
+  %\includegraphics[width=0.6\textwidth]{homo-model/a-356}
+  \end{figure}  
               
-        \begin{block}{\small Rauber and Rünger's energy model}
-         $ E = P_{d} \cdot S_1^{-2} \cdot
-         \left( T_1 + \sum_{i=2}^{N} \frac{T_i^3}{T_1^2} \right) +
-            P_{s} \cdot S_1  \cdot T_1 \cdot N$
-        \end{block}     
-           \textcolor{blue}{$S_1$}: the maximum scaling factor.\\ 
-           \textcolor{blue}{$P_{d}$}: the dynamic power.\\
-           \textcolor{blue}{$P_{s}$}: the static power.\\
-           \textcolor{blue}{$T_I$}: the execution time of the slower task.\\ 
-           \textcolor{blue}{$T_i$}: the execution time of task i.\\ 
-           \textcolor{blue}{$N$}:  the number of  nodes.
+      %  \begin{block}{\small Rauber and Rünger's energy model}
+         %$ E = P_{d} \cdot S_1^{-2} \cdot
+         %\left( T_1 + \sum_{i=2}^{N} \frac{T_i^3}{T_1^2} \right) +
+          %  P_{s} \cdot S_1  \cdot T_1 \cdot N$
+        %\end{block}     
+          % \textcolor{blue}{$S_1$}: the maximum scaling factor.\\ 
+          % \textcolor{blue}{$P_{d}$}: the dynamic power.\\
+          % \textcolor{blue}{$P_{s}$}: the static power.\\
+          % \textcolor{blue}{$T_I$}: the execution time of the slower task.\\ 
+          % \textcolor{blue}{$T_i$}: the execution time of task i.\\ 
+          % \textcolor{blue}{$N$}:  the number of  nodes.
+          
+          
        
 \end{frame}
   
@@ -384,23 +419,23 @@ for a warehouse-sized computer.
 %%%%%%%%%%%%%%%%%%%%
 %%    SLIDE 15   %%
 %%%%%%%%%%%%%%%%%%%% 
- \begin{frame}{Scaling factor selection algorithm}
-\vspace{-0.75cm}
-     \begin{center}
-      \includegraphics[width=.56 \textwidth]{c1/algo-homo}
-     \end{center}
%\begin{frame}{Scaling factor selection algorithm}
+%\vspace{-0.75cm}
+    % \begin{center}
+      %\includegraphics[width=.56 \textwidth]{c1/algo-homo}
+     %\end{center}
      
-\end{frame}
+%\end{frame}
 
 
 %%%%%%%%%%%%%%%%%%%%
 %%    SLIDE 16   %%
 %%%%%%%%%%%%%%%%%%%% 
-\begin{frame}{Scaling algorithm example}
+\begin{frame}{Scaling factor selection algorithm}
 \vspace{-0.75cm}
      
      \begin{figure}
-  \animategraphics[autopause,controls,scale=0.28,buttonsize=0.2cm]{10}{dvfs-homo/a-}{0}{159}
+  \animategraphics[autopause,controls,scale=0.29,buttonsize=0.2cm]{10}{dvfs-homo/a-}{0}{335}
   %\includegraphics[width=0.6\textwidth]{dvfs-homo/a-159}
   \end{figure}
 \end{frame}
@@ -432,6 +467,8 @@ for a warehouse-sized computer.
      \includegraphics[width=.35\textwidth]{c1/cg}
      \includegraphics[width=.35\textwidth]{c1/bt}}
      
+\hspace{0.5cm}     
+     
      \centering {\includegraphics[width=.55\textwidth]{c1/results.pdf}}
  \end{femtoBlock}
 \end{frame}
@@ -461,25 +498,25 @@ for a warehouse-sized computer.
 %%%%%%%%%%%%%%%%%%%%
 %%    SLIDE 20   %%
 %%%%%%%%%%%%%%%%%%%% 
-\begin{frame}{The proposed new energy model}
-    \vspace{-0.75cm}     
-  \begin{figure}
-  \animategraphics[autopause,controls,scale=0.28,buttonsize=0.2cm]{10}{homo-model/a-}{0}{356}
+%\begin{frame}{The proposed new energy model}
+   % \vspace{-0.75cm}     
+  %\begin{figure}
% \animategraphics[autopause,controls,scale=0.28,buttonsize=0.2cm]{10}{homo-model/a-}{0}{356}
   %\includegraphics[width=0.6\textwidth]{homo-model/a-356}
-  \end{figure}
-\end{frame}
% \end{figure}
+%\end{frame}
 
 
 %%%%%%%%%%%%%%%%%%%%
 %%    SLIDE 21   %%
 %%%%%%%%%%%%%%%%%%%% 
-\begin{frame}{\large Comparing the new model with Rauber's model }
- \vspace{0.1cm}    
- \centering
-    \includegraphics[width=.45\textwidth]{c1/energy_con}
+%\begin{frame}{\large Comparing the new model with Rauber's model }
+% \vspace{0.1cm}    
+% \centering
+    %\includegraphics[width=.45\textwidth]{c1/energy_con}
     
-    \includegraphics[width=.5\textwidth]{c1/compare-scales}
-\end{frame}
+   %\includegraphics[width=.5\textwidth]{c1/compare-scales}
+%\end{frame}
 
 
 
@@ -582,10 +619,10 @@ for a warehouse-sized computer.
 %%%%%%%%%%%%%%%%%%%%
 %%    SLIDE 26    %%
 %%%%%%%%%%%%%%%%%%%%
-  \begin{frame}{The  energy  model  for heterogeneous cluster}
-  \vspace{-0.5cm}
+  \begin{frame}{The energy  model  for heterogeneous cluster}
+  \vspace{-0.77cm}
  \begin{figure}
-  \animategraphics[autopause,controls,scale=0.28,buttonsize=0.2cm]{10}{heter-model/a-}{0}{272}
+  \animategraphics[autopause,controls,scale=0.3,buttonsize=0.2cm]{10}{heter-model/a-}{0}{350}
   %\includegraphics[width=0.6\textwidth]{heter-model/a-272}
   \end{figure}
  \end{frame}
@@ -621,22 +658,22 @@ for a warehouse-sized computer.
 %%%%%%%%%%%%%%%%%%%%
 %%    SLIDE 28    %%
 %%%%%%%%%%%%%%%%%%%%
- \begin{frame}{The scaling algorithm for heter. cluster}
%\begin{frame}{The scaling algorithm for heter. cluster}
 
- \centering
-   \includegraphics[width=.52\textwidth]{algo-heter}
- \end{frame}
%\centering
+   %\includegraphics[width=.52\textwidth]{algo-heter}
%\end{frame}
  
  
  %%%%%%%%%%%%%%%%%%%%
 %%    SLIDE 29    %%
 %%%%%%%%%%%%%%%%%%%%
- \begin{frame}{The scaling algorithm example}
- \vspace{-0.5cm}
+ \begin{frame}{The scaling algorithm for heter. cluster}
+ \vspace{-0.77cm}
  \centering
  
   \begin{figure}
-  \animategraphics[autopause,controls,scale=0.28,buttonsize=0.2cm]{10}{dvfs-heter/a-}{0}{650}
+  \animategraphics[autopause,controls,scale=0.3,buttonsize=0.2cm]{10}{dvfs-heter/a-}{0}{836}
  % \includegraphics[width=0.6\textwidth]{dvfs-heter/a-650}
   \end{figure}
 \end{frame}
@@ -665,67 +702,39 @@ for a warehouse-sized computer.
 %%%%%%%%%%%%%%%%%%%%
 %%    SLIDE 31    %%
 %%%%%%%%%%%%%%%%%%%%
-\begin{frame}{The simulation results}
-   \vspace{-5 mm}
-   \begin{figure}[!t]
-   \centering
-    \includegraphics[width=0.8\textwidth]{c2/energy_saving.pdf}
+%\begin{frame}{The simulation results}
+  % \vspace{-5 mm}
+  % \begin{figure}[!t]
+   %\centering
+    %\includegraphics[width=0.8\textwidth]{c2/energy_saving.pdf}
     
-    \textcolor{blue}{On average, it reduces the energy consumption by \textcolor{red}{29\%} 
-     for the class C of the NAS Benchmarks executed over 8 nodes}
+   % \textcolor{blue}{On average, it reduces the energy consumption by \textcolor{red}{29\%} 
+     %for the class C of the NAS Benchmarks executed over 8 nodes}
     
-   \end{figure}
-\end{frame} 
+  % \end{figure}
+%\end{frame} 
  
  
  
 %%%%%%%%%%%%%%%%%%%%
 %%    SLIDE 32    %%
 %%%%%%%%%%%%%%%%%%%%
-\begin{frame}{The simulation results}
-   \vspace{-5 mm}
-   \begin{figure}[!t]
-   \centering
+%\begin{frame}{The simulation results}
%  \vspace{-5 mm}
+  % \begin{figure}[!t]
+  % \centering
     
-    \includegraphics[width=.8\textwidth]{c2/perf_degra.pdf}
+   % \includegraphics[width=.8\textwidth]{c2/perf_degra.pdf}
    
-   \textcolor{blue}{On average, it degrades  by \textcolor{red}{3.8\%} the performance
-     of NAS Benchmarks class C executed over 8 nodes}
-     \end{figure}
-\end{frame} 
+  % \textcolor{blue}{On average, it degrades  by \textcolor{red}{3.8\%} the performance
+    % of NAS Benchmarks class C executed over 8 nodes}
+  %   \end{figure}
+%\end{frame} 
  
  
  
-%%%%%%%%%%%%%%%%%%%%
-%%    SLIDE 33    %%
-%%%%%%%%%%%%%%%%%%%%
-\begin{frame}{The results of the three power scenarios}
-   \vspace{-5 mm}
-   \begin{figure}[!t]
-   \centering
-   \includegraphics[width=.55\textwidth]{c2/three_power.pdf}
-   \vspace{10 mm}
-   \includegraphics[width=.55\textwidth]{c2/three_scenarios.pdf}
-   \end{figure}
-\end{frame}  
-
 
 
-%%%%%%%%%%%%%%%%%%%%
-%%    SLIDE 34    %%
-%%%%%%%%%%%%%%%%%%%%
-\begin{frame}{Comparing the objective function to EDP}
-     
-     EDP is the products between the energy consumption and the delay.
-    \vspace{-5 mm}
-    \begin{figure}[!t]
-    \centering
-    \includegraphics[width=.55\textwidth]{c2/avg_compare.pdf}
-    
-    \includegraphics[width=.55\textwidth]{c2/compare_with_EDP.pdf}
-    \end{figure}
-\end{frame} 
-
 
 
 
@@ -745,10 +754,10 @@ for a warehouse-sized computer.
 %%%%%%%%%%%%%%%%%%%%
 %%    SLIDE 36    %%
 %%%%%%%%%%%%%%%%%%%%
-\begin{frame}{The grid architecture}
-\begin{center}
-\includegraphics[width=.8\textwidth]{c2/init_freq.pdf}
-\end{center}
+%\begin{frame}{The grid architecture}
+%\begin{center}
+%\includegraphics[width=.8\textwidth]{c2/init_freq.pdf}
+%\end{center}
 
  %\begin{frame}{Performance, Energy and trade-off models} \small
   %\begin{block}{\small The performance model of grid}
@@ -780,7 +789,7 @@ for a warehouse-sized computer.
    % \end{block}  
      
      
- \end{frame}
%\end{frame}
   
   
   
@@ -838,11 +847,32 @@ for a warehouse-sized computer.
 
 
 
+%%%%%%%%%%%%%%%%%%%%
+%%    SLIDE 33    %%
+%%%%%%%%%%%%%%%%%%%%
+\begin{frame}{The results of the three power scenarios}
+   \vspace{-5 mm}
+   \begin{figure}[!t]
+   \centering
+   \includegraphics[width=.45\textwidth]{c2/eng_pow.eps}
+   \hspace{0.3cm}
+   \includegraphics[width=.45\textwidth]{c2/per_pow.eps}
+   \vspace{4 mm}
+   \includegraphics[width=.7\textwidth]{c2/three_scenarios.pdf}
+   \end{figure}
+\end{frame}  
+
+
+
+
+
+
+
 %%%%%%%%%%%%%%%%%%%%
 %%    SLIDE 39    %%
 %%%%%%%%%%%%%%%%%%%%
-\begin{frame}{Experiments over Grid'5000}
-   \textcolor{blue}{One core  and Multi-cores per node results:}
+\begin{frame}{One core and Multi-cores per node results}
+   %\textcolor{blue}{One core  and Multi-cores per node results:}
    
   \begin{figure}[h!] 
   \includegraphics[width=.48\textwidth]{c2/eng_s_mc.eps}
@@ -854,7 +884,20 @@ for a warehouse-sized computer.
 \end{frame}
 
 
-
+%%%%%%%%%%%%%%%%%%%%
+%%    SLIDE 34    %%
+%%%%%%%%%%%%%%%%%%%%
+\begin{frame}{Comparing the objective function to EDP}
+     
+     EDP is the products between the energy consumption and the delay.
+    \vspace{-5 mm}
+    \begin{figure}[!t]
+    \centering
+    \includegraphics[width=.6\textwidth]{c2/edp_dist.eps}
+    
+  
+    \end{figure}
+\end{frame} 
 %\begin{frame}{Summary}
 %\begin{itemize}
      % \small
@@ -894,7 +937,7 @@ for a warehouse-sized computer.
 \textcolor{blue}{The execution of a synchronous parallel iterative application over a grid }
 \vspace{-8 mm}
 \begin{figure}
- \animategraphics[autopause,controls,scale=0.25,buttonsize=0.2cm]{10}{syn/a-}{0}{503}
+ \animategraphics[autopause,controls,scale=0.26,buttonsize=0.2cm]{10}{syn/a-}{0}{647}
  %\includegraphics[width=0.6\textwidth]{syn/a-503}
   \end{figure}
 \end{frame}
@@ -908,7 +951,7 @@ for a warehouse-sized computer.
 \textcolor{blue}{The execution of an asynchronous parallel iterative application over a grid }
 \vspace{-8 mm}
 \begin{figure}
- \animategraphics[autopause,controls,scale=0.25,buttonsize=0.2cm]{10}{asyn/a-}{0}{440}
+ \animategraphics[autopause,controls,scale=0.26,buttonsize=0.2cm]{10}{asyn/a-}{0}{556}
  %\includegraphics[width=0.6\textwidth]{asyn/a-440}
   \end{figure}
 \end{frame}
@@ -922,7 +965,7 @@ for a warehouse-sized computer.
 \textcolor{blue}{Using asynchronous communications with DVFS }
 \vspace{-8 mm}
 \begin{figure}
-  \animategraphics[autopause,controls,scale=0.25,buttonsize=0.2cm]{10}{asyn+dvfs/a-}{0}{314}
+  \animategraphics[autopause,controls,scale=0.26,buttonsize=0.2cm]{10}{asyn+dvfs/a-}{0}{344}
   %\includegraphics[width=0.6\textwidth]{asyn+dvfs/a-314}
   \end{figure}
 \end{frame}
@@ -1028,27 +1071,27 @@ for a warehouse-sized computer.
 %%%%%%%%%%%%%%%%%%%%
 %%    SLIDE 48   %%
 %%%%%%%%%%%%%%%%%%%%
-\begin{frame}{The simulation results}
-\centering \small \textcolor{blue}{The best scenario in terms of energy and performance  is the Async. MS with Sync. DVFS}
+%\begin{frame}{The simulation results}
+%\centering \small \textcolor{blue}{The best scenario in terms of energy and performance  is %the Async. MS with Sync. DVFS}
 
-\centering
-    \includegraphics[scale=0.42]{c3/energy_saving.eps}
+%\centering
+   % \includegraphics[scale=0.42]{c3/energy_saving.eps}
 
- \centering  The average energy saving  = \textcolor{red}{22\%}
-\end{frame} 
%\centering  The average energy saving  = \textcolor{red}{22\%}
+%\end{frame} 
 
 
 
 %%%%%%%%%%%%%%%%%%%%
 %%    SLIDE 49   %%
 %%%%%%%%%%%%%%%%%%%%
-\begin{frame}{The simulation results}
-\centering
+%\begin{frame}{The simulation results}
+%\centering
    
-     \includegraphics[scale=0.42]{c3/perf_degra.eps}
+   %  \includegraphics[scale=0.42]{c3/perf_degra.eps}
      
- \centering    The average speed-up  = \textcolor{red}{5.72\%}
-\end{frame} 
+%\centering    The average speed-up  = \textcolor{red}{5.72\%}
+%\end{frame} 
 
 
 
@@ -1056,7 +1099,7 @@ for a warehouse-sized computer.
 %%    SLIDE 50   %%
 %%%%%%%%%%%%%%%%%%%%
  \begin{frame}{The Grid'5000 results}
-   \vspace{-20 mm}
+   \vspace{-10 mm}
    \begin{figure}[!t]
    \centering
    \hspace{-8 mm}
@@ -1065,6 +1108,9 @@ for a warehouse-sized computer.
    \end{figure}
     \vspace{-5 mm}
      \centering \footnotesize
+     
+     %\small \textcolor{blue}{The best scenario in terms of energy and performance  is the Async. MS with Sync. DVFS}
+     
 The average energy saving = \textcolor{red}{26.93\%}, the average speed-up =  \textcolor{red}{21.48\%}
 \end{frame}