]> AND Private Git Repository - ThesisAhmed.git/blobdiff - thesis-presentation/AhmedSlides.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
new corrections
[ThesisAhmed.git] / thesis-presentation / AhmedSlides.tex
index a7b6a84073aafacde8de1aca0b1706a767252821..7e7d97bfbe43820cdcf08bc600606597ffbd1a15 100644 (file)
@@ -76,7 +76,7 @@
 \vspace{2cm}
 
 \title{   \textbf{Energy Consumption Optimization of   Parallel Applications with Iterations   using CPU Frequency Scaling} \\ \vspace{0.2cm} \hspace{1.8cm}\textbf{\textcolor{cyan}{\small PhD Dissertation Defense}}}\vspace{-1cm}
-\author{ \textbf{Ahmed Badri Muslim Fanfakh} \\ \vspace{0.5cm}\small Under Supervision: \textcolor{cyan}{\small  Raphaël COUTURIER and Jean-Claude CHARR} \\\vspace{0.1cm} \textcolor{blue}{ University of Franche-Comté - FEMTO-ST - DISC Dept.  - AND Team} \\ ~~~~~~~~~~~~~~~~~~~~~ \textbf{\textcolor{blue}{ 17 October 2016 }}} 
+\author{ \textbf{Ahmed Badri Muslim Fanfakh} \\ \vspace{0.5cm}\small Under Supervision: \textcolor{cyan}{\small  Raphaël COUTURIER and Jean-Claude CHARR} \\\vspace{0.1cm} \textcolor{blue}{ University of Bourgogne Franche-Comté - FEMTO-ST - DISC Dept.  - AND Team} \\ ~~~~~~~~~~~~~~~~~~~~~ \textbf{\textcolor{blue}{ 17 October 2016 }}} 
 
 \date{}
 \vspace{-3cm}
 %%%%%%%%%%%%%%%%%%%% 
 \begin{frame}{Introduction and problem definition}
  \section{\small {Introduction and Problem definition}}
-   \bf \textcolor{blue}{Approaches to increase the computing power:}
+   \bf \textcolor{blue}{Approaches to increase the computing power of the parallel platform :}
      \begin{minipage}{0.5\textwidth} 
-      \textcolor{blue}{1)} \small  \bf \textcolor{black}{Increasing the frequency of a  processor}
+      \textcolor{blue}{1)} \small  \bf \textcolor{black}{Increasing the frequency of a  processor.}
     \end{minipage}%
     \begin{minipage}{0.6\textwidth} 
     
     \end{minipage}%
     \vspace{0.2cm}
     \begin{minipage}{0.5\textwidth} 
-     \textcolor{blue}{2)} \small \bf \textcolor{black}{Increasing the number of nodes}        
+     \textcolor{blue}{2)} \small \bf \textcolor{black}{Increasing the number of nodes.}
+     
+    \tiny  \textcolor{blue}{Recently, Tianhe-2 supercomputer had more than 3 million cores while consuming around 17.8 megawatts.}  
+          
     \end{minipage}%
     \begin{minipage}{0.6\textwidth} 
     \begin{figure}[h!]
     \vspace{-0.9cm}
     \begin{figure}
      \animategraphics[autopause,loop,controls,scale=0.25,buttonsize=0.2cm]{200}{on-off/a-}{0}{69}
+     %\includegraphics[width=0.6\textwidth]{on-off/a-69}
     \end{figure}
  \end{frame}
 
   \textcolor{blue}{2)} \bf \textcolor{black}{Dynamic voltage and frequency Scaling (DVFS)}
      \vspace{-0.5cm}
     \begin{figure}
-     \animategraphics[autopause,controls,scale=0.25,buttonsize=0.2cm]{10}{DVFS-meq/a-}{0}{109}
+    \animategraphics[autopause,controls,scale=0.25,buttonsize=0.2cm]{10}{DVFS-meq/a-}{0}{109}
+     %\includegraphics[width=0.6\textwidth]{DVFS-meq/a-109}
     \end{figure}
     \end{frame}
  
 \begin{minipage}{0.5\textwidth} 
     \vspace{-0.49cm} 
       \begin{itemize} 
-       \item  \small \textcolor{black}{The biggest power consumption is consumed by a processor \textsuperscript{1}. }
+       \item  \small \textcolor{black}{The biggest power consumption is consumed by the processor \textsuperscript{1}. }
                
         \end{itemize}
 
     \end{figure}
     \end{minipage}%
     
-  \begin{itemize} \item \small  \textcolor{black}{It used to reduce the energy consumption  while keeping all the node working, thus  it is more adapted to parallel computing.}
+  \begin{itemize} \item \small  \textcolor{black}{It uses to reduce the energy consumption  while keeping all the nodes working, thus  it is more adapted to parallel computing.}
                \item \small \textcolor{black}{It has a very small overhead compared to switching-off the idle nodes method.}  \end{itemize} 
     
 \vspace{-0.12cm}
        \small  \textcolor{blue}{Challenge:} \textcolor{black}{DVFS is used to reduce the energy consumption, \textcolor{blue}{but} it degrades the performance simultaneously.}
                
                \vspace{0.1cm}
- \small         \textcolor{blue}{Objective:} \textcolor{black}{Applying the DVFS to minimize the energy consumption while maintaining the performance of the parallel applications.}
+ \small         \textcolor{blue}{Objective:} \textcolor{black}{Applying the DVFS to minimize the energy consumption while maintaining the performance of the parallel application.}
 \end{block}
  
  \tiny \textsuperscript{1} Fan, X., Weber, W., and Barroso, L. A. 2007.  Power provisioning
@@ -394,7 +399,7 @@ for a warehouse-sized computer.
      
      \begin{figure}
   \animategraphics[autopause,controls,scale=0.28,buttonsize=0.2cm]{10}{dvfs-homo/a-}{0}{159}
-
+  %\includegraphics[width=0.6\textwidth]{dvfs-homo/a-159}
   \end{figure}
 \end{frame}
 
@@ -405,8 +410,8 @@ for a warehouse-sized computer.
       \begin{femtoBlock}{}      
         \begin{itemize}
          \small
-           \item The experiments are executed on the simulator SimGrid/SMPI v3.10.\medskip
-           \item The proposed algorithm is applied to the NAS parallel benchmarks.\medskip
+           \item The experiments were executed on the simulator SimGrid/SMPI v3.10.\medskip
+           \item The proposed algorithm was applied to the NAS parallel benchmarks.\medskip
            \item Each node in the cluster has 18 frequency values from \textbf{2.5$GHz$} to \textbf{800$MHz$}.\medskip
            \item The proposed algorithm was evaluated over the A, B, C classes of the benchmarks using 4, 8 or 9 and 16 nodes respectively. \medskip
            \item $P_d=20W$,  $P_s=4W$.
@@ -456,6 +461,7 @@ for a warehouse-sized computer.
     \vspace{-0.75cm}     
   \begin{figure}
   \animategraphics[autopause,controls,scale=0.28,buttonsize=0.2cm]{10}{homo-model/a-}{0}{356}
+  %\includegraphics[width=0.6\textwidth]{homo-model/a-356}
   \end{figure}
 \end{frame}
 
@@ -502,7 +508,7 @@ for a warehouse-sized computer.
 \begin{center}
 
 
-\bf  \Large \textcolor{blue}{Energy optimization of a parallel application with iterations running over Heterogeneous platform}
+\bf  \Large \textcolor{blue}{Energy optimization of a parallel application with iterations running over Heterogeneous platform}
 \end{center}
  \end{frame}
  
@@ -576,6 +582,7 @@ for a warehouse-sized computer.
   \vspace{-0.5cm}
  \begin{figure}
   \animategraphics[autopause,controls,scale=0.28,buttonsize=0.2cm]{10}{heter-model/a-}{0}{272}
+  %\includegraphics[width=0.6\textwidth]{heter-model/a-272}
   \end{figure}
  \end{frame}
  
@@ -626,6 +633,7 @@ for a warehouse-sized computer.
  
   \begin{figure}
   \animategraphics[autopause,controls,scale=0.28,buttonsize=0.2cm]{10}{dvfs-heter/a-}{0}{650}
+ % \includegraphics[width=0.6\textwidth]{dvfs-heter/a-650}
   \end{figure}
 \end{frame}
 
@@ -660,7 +668,7 @@ for a warehouse-sized computer.
     \includegraphics[width=0.8\textwidth]{c2/energy_saving.pdf}
     
     \textcolor{blue}{On average, it reduces the energy consumption by \textcolor{red}{29\%} 
-     for the class C of the NAS benchmarks executed over 8 nodes}
+     for the class C of the NAS Benchmarks executed over 8 nodes}
     
    \end{figure}
 \end{frame} 
@@ -678,7 +686,7 @@ for a warehouse-sized computer.
     \includegraphics[width=.8\textwidth]{c2/perf_degra.pdf}
    
    \textcolor{blue}{On average, it degrades  by \textcolor{red}{3.8\%} the performance
-     of NAS benchmarks class C executed over 8 nodes}
+     of NAS Benchmarks class C executed over 8 nodes}
      \end{figure}
 \end{frame} 
  
@@ -867,7 +875,7 @@ for a warehouse-sized computer.
 \begin{frame}{Contribution}
 \section{\small {Energy optimization of asynchronous applications}}
 \begin{center}
-\bf  \Large \textcolor{blue}{Energy optimization of asynchronous  message passing iterative applications}
+\bf  \Large \textcolor{blue}{Energy optimization of asynchronous iterative message passing  applications}
 \end{center}
  \end{frame}
 
@@ -880,7 +888,8 @@ for a warehouse-sized computer.
 \textcolor{blue}{The execution of a synchronous parallel iterative application over a grid }
 \vspace{-8 mm}
 \begin{figure}
-  \animategraphics[autopause,controls,scale=0.25,buttonsize=0.2cm]{10}{syn/a-}{0}{503}
+ \animategraphics[autopause,controls,scale=0.25,buttonsize=0.2cm]{10}{syn/a-}{0}{503}
+ %\includegraphics[width=0.6\textwidth]{syn/a-503}
   \end{figure}
 \end{frame}
 
@@ -893,7 +902,8 @@ for a warehouse-sized computer.
 \textcolor{blue}{The execution of an asynchronous parallel iterative application over a grid }
 \vspace{-8 mm}
 \begin{figure}
-  \animategraphics[autopause,controls,scale=0.25,buttonsize=0.2cm]{10}{asyn/a-}{0}{440}
+ \animategraphics[autopause,controls,scale=0.25,buttonsize=0.2cm]{10}{asyn/a-}{0}{440}
+ %\includegraphics[width=0.6\textwidth]{asyn/a-440}
   \end{figure}
 \end{frame}
 
@@ -907,6 +917,7 @@ for a warehouse-sized computer.
 \vspace{-8 mm}
 \begin{figure}
   \animategraphics[autopause,controls,scale=0.25,buttonsize=0.2cm]{10}{asyn+dvfs/a-}{0}{314}
+  %\includegraphics[width=0.6\textwidth]{asyn+dvfs/a-314}
   \end{figure}
 \end{frame}
 
@@ -1077,7 +1088,7 @@ The energy saving = \textcolor{red}{26.93\%}, the average speed-up =  \textcolor
       
 
 
-\small \barrow \textcolor{blue}{A new objective function} was proposed to optimize both the energy consumption and the performance.
+\small \barrow \textcolor{blue}{A new objective function} to optimize both the energy consumption and the performance was proposed.
 
 \small \barrow \textcolor{blue}{New online frequency selecting algorithms} for clusters and grids were developed.