]> AND Private Git Repository - ThesisAhmed.git/blobdiff - thesis-presentation/AhmedSlides.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
correction
[ThesisAhmed.git] / thesis-presentation / AhmedSlides.tex
index a7b6a84073aafacde8de1aca0b1706a767252821..50ac98482737a7fbd70fb12e998681385ae8ead5 100644 (file)
@@ -75,8 +75,8 @@
 %Iterations using CPU Frequency Scaling} 
 \vspace{2cm}
 
 %Iterations using CPU Frequency Scaling} 
 \vspace{2cm}
 
-\title{   \textbf{Energy Consumption Optimization of   Parallel Applications with Iterations   using CPU Frequency Scaling} \\ \vspace{0.2cm} \hspace{1.8cm}\textbf{\textcolor{cyan}{\small PhD Dissertation Defense}}}\vspace{-1cm}
-\author{ \textbf{Ahmed Badri Muslim Fanfakh} \\ \vspace{0.5cm}\small Under Supervision: \textcolor{cyan}{\small  Raphaël COUTURIER and Jean-Claude CHARR} \\\vspace{0.1cm} \textcolor{blue}{ University of Franche-Comté - FEMTO-ST - DISC Dept.  - AND Team} \\ ~~~~~~~~~~~~~~~~~~~~~ \textbf{\textcolor{blue}{ 17 October 2016 }}} 
+\title{   \textbf{Energy Consumption Optimization of   Parallel Applications with Iterations   using CPU Frequency Scaling} \\ \vspace{0.2cm} \hspace{1.8cm}\textbf{\textcolor{cyan}{\small PhD Dissertation Defense}}}\vspace{-0.5cm}
+\author{ \textbf{Ahmed Badri Muslim Fanfakh} \\ \vspace{0.5cm}\small Under the supervision of: \\ \textcolor{cyan}{\small  Raphaël COUTURIER and Jean-Claude CHARR} \\\vspace{0.1cm} \textcolor{blue}{ UBFC - FEMTO-ST - DISC Dept.  - AND Team} \\ ~~~~~~~~~~~~~~~~~~~~~ \textbf{\textcolor{blue}{ 17 October 2016 }}} 
 
 \date{}
 \vspace{-3cm}
 
 \date{}
 \vspace{-3cm}
 %%%%%%%%%%%%%%%%%%%% 
 \begin{frame}{Introduction and problem definition}
  \section{\small {Introduction and Problem definition}}
 %%%%%%%%%%%%%%%%%%%% 
 \begin{frame}{Introduction and problem definition}
  \section{\small {Introduction and Problem definition}}
-   \bf \textcolor{blue}{Approaches to increase the computing power:}
+   \bf \textcolor{blue}{To get more computing power:}
      \begin{minipage}{0.5\textwidth} 
      \begin{minipage}{0.5\textwidth} 
-      \textcolor{blue}{1)} \small  \bf \textcolor{black}{Increasing the frequency of a  processor}
+      \textcolor{blue}{1)} \small  \bf \textcolor{black}{Increase the frequency of a  processor.\\ (limited due to overheating)}
     \end{minipage}%
     \begin{minipage}{0.6\textwidth} 
     
     \end{minipage}%
     \begin{minipage}{0.6\textwidth} 
     
     \end{minipage}%
     \vspace{0.2cm}
     \begin{minipage}{0.5\textwidth} 
     \end{minipage}%
     \vspace{0.2cm}
     \begin{minipage}{0.5\textwidth} 
-     \textcolor{blue}{2)} \small \bf \textcolor{black}{Increasing the number of nodes}        
+     \textcolor{blue}{2)} \small \bf \textcolor{black}{Use more nodes.}
+     
+ \textcolor{black}{The supercomputer Tianhe-2 has more than 3 million cores and consumes around 17.8 megawatts.}  
+          
     \end{minipage}%
     \begin{minipage}{0.6\textwidth} 
     \begin{figure}[h!]
     \end{minipage}%
     \begin{minipage}{0.6\textwidth} 
     \begin{figure}[h!]
  %%%%%%%%%%%%%%%%%%%
 %%    SLIDE 04   %%
 %%%%%%%%%%%%%%%%%%%% 
  %%%%%%%%%%%%%%%%%%%
 %%    SLIDE 04   %%
 %%%%%%%%%%%%%%%%%%%% 
-\begin{frame}{Introduction and problem definition}
+\begin{frame}{Techniques for energy consumption reduction}
  \vspace{0.1cm}
  \vspace{0.1cm}
- \bf \textcolor{blue}{Techniques for energy consumption reduction}
  
      \textcolor{blue}{1)} \bf \textcolor{black}{Switch-off idle nodes method}  
     \vspace{-0.9cm}
     \begin{figure}
      \animategraphics[autopause,loop,controls,scale=0.25,buttonsize=0.2cm]{200}{on-off/a-}{0}{69}
  
      \textcolor{blue}{1)} \bf \textcolor{black}{Switch-off idle nodes method}  
     \vspace{-0.9cm}
     \begin{figure}
      \animategraphics[autopause,loop,controls,scale=0.25,buttonsize=0.2cm]{200}{on-off/a-}{0}{69}
+     %\includegraphics[width=0.6\textwidth]{on-off/a-69}
     \end{figure}
  \end{frame}
 
     \end{figure}
  \end{frame}
 
   \textcolor{blue}{2)} \bf \textcolor{black}{Dynamic voltage and frequency Scaling (DVFS)}
      \vspace{-0.5cm}
     \begin{figure}
   \textcolor{blue}{2)} \bf \textcolor{black}{Dynamic voltage and frequency Scaling (DVFS)}
      \vspace{-0.5cm}
     \begin{figure}
-     \animategraphics[autopause,controls,scale=0.25,buttonsize=0.2cm]{10}{DVFS-meq/a-}{0}{109}
+    \animategraphics[autopause,controls,scale=0.25,buttonsize=0.2cm]{10}{DVFS-meq/a-}{0}{109}
+     %\includegraphics[width=0.6\textwidth]{DVFS-meq/a-109}
     \end{figure}
     \end{frame}
  
     \end{figure}
     \end{frame}
  
 \begin{frame}{Motivations}
 \vspace{0.05cm}
 \section{\small {Motivations}}
 \begin{frame}{Motivations}
 \vspace{0.05cm}
 \section{\small {Motivations}}
-\textcolor{blue}{Why we used DVFS method:}
+\textcolor{blue}{Why we used the DVFS method:}
 \vspace{-0.49cm}
 \begin{minipage}{0.5\textwidth} 
     \vspace{-0.49cm} 
       \begin{itemize} 
 \vspace{-0.49cm}
 \begin{minipage}{0.5\textwidth} 
     \vspace{-0.49cm} 
       \begin{itemize} 
-       \item  \small \textcolor{black}{The biggest power consumption is consumed by a processor \textsuperscript{1}. }
+       \item  \small \textcolor{black}{ The CPU is the component that consumes the  highest amount of energy in a node \textsuperscript{1}. }
                
         \end{itemize}
 
                
         \end{itemize}
 
     \end{figure}
     \end{minipage}%
     
     \end{figure}
     \end{minipage}%
     
-  \begin{itemize} \item \small  \textcolor{black}{It used to reduce the energy consumption  while keeping all the node working, thus  it is more adapted to parallel computing.}
-               \item \small \textcolor{black}{It has a very small overhead compared to switching-off the idle nodes method.}  \end{itemize} 
+  \begin{itemize} \item \small  \textcolor{black}{DVFS reduces the energy consumption while 
+   keeping all the nodes working.}
+               \item \small \textcolor{black}{It has a very small overhead compared to switching-off the idle nodes.}  \end{itemize} 
     
 \vspace{-0.12cm}
 
     
 \vspace{-0.12cm}
 
        \small  \textcolor{blue}{Challenge:} \textcolor{black}{DVFS is used to reduce the energy consumption, \textcolor{blue}{but} it degrades the performance simultaneously.}
                
                \vspace{0.1cm}
        \small  \textcolor{blue}{Challenge:} \textcolor{black}{DVFS is used to reduce the energy consumption, \textcolor{blue}{but} it degrades the performance simultaneously.}
                
                \vspace{0.1cm}
- \small         \textcolor{blue}{Objective:} \textcolor{black}{Applying the DVFS to minimize the energy consumption while maintaining the performance of the parallel applications.}
+ \small         \textcolor{blue}{Objective:} \textcolor{black}{Applying the DVFS to minimize the energy consumption while maintaining the performance of the parallel application.}
 \end{block}
  
  \tiny \textsuperscript{1} Fan, X., Weber, W., and Barroso, L. A. 2007.  Power provisioning
 \end{block}
  
  \tiny \textsuperscript{1} Fan, X., Weber, W., and Barroso, L. A. 2007.  Power provisioning
@@ -217,9 +223,12 @@ for a warehouse-sized computer.
 %%%%%%%%%%%%%%%%%%%% 
 
 
 %%%%%%%%%%%%%%%%%%%% 
 
 
-\begin{frame}{Contribution}
+\begin{frame}{The first contribution}
+
+\section{\small {Energy optimization of a homogeneous platform}}
+%\vspace{-3cm}
+ % \includegraphics[width=0.6\textwidth]{white.pdf} 
 
 
-\section{\small {Energy optimization of homogeneous platform}}
 \begin{center}
 \bf  \Large \textcolor{blue}{Energy optimization of a parallel application with iterations running over a homogeneous platform}
 \end{center}
 \begin{center}
 \bf  \Large \textcolor{blue}{Energy optimization of a parallel application with iterations running over a homogeneous platform}
 \end{center}
@@ -234,11 +243,10 @@ for a warehouse-sized computer.
 \begin{frame}{Objectives}
         \begin{femtoBlock}{} \vspace{-12 mm}
                 \begin{itemize} \small
 \begin{frame}{Objectives}
         \begin{femtoBlock}{} \vspace{-12 mm}
                 \begin{itemize} \small
-                   \item  Study the effect of the scaling factor $S$ on \textbf{energy consumption and performance } of parallel  applications with iterations such as NAS 
-                          Benchmarks. \includegraphics[width=.06\textwidth]{c1/nasa.pdf} \medskip
+                   \item  Study the effect of the scaling factor on the \textbf{energy consumption and performance } of parallel  applications with iterations. \medskip
                    
                    \item  Discovering the \textbf{energy-performance trade-off relation} when changing the frequency of the processor.\medskip
                    
                    \item  Discovering the \textbf{energy-performance trade-off relation} when changing the frequency of the processor.\medskip
-                   \item  Proposing an algorithm for selecting the scaling factor $S$ producing \textbf {the optimal trade-off} between the energy consumption and the performance. \medskip
+                   \item  Proposing an algorithm for selecting the scaling factor that produces  \textbf {the optimal trade-off} between the energy consumption and the performance. \medskip
                    \item  Comparing the proposed algorithm to existing methods.
                    
                    
                    \item  Comparing the proposed algorithm to existing methods.
                    
                    
@@ -261,9 +269,9 @@ for a warehouse-sized computer.
 \vspace{-0.5 cm}
 \begin{figure}
   \centering
 \vspace{-0.5 cm}
 \begin{figure}
   \centering
-  \subfloat[Sync. imbalanced communications]{%
+  \subfloat[Synchronous imbalanced communications]{%
     \includegraphics[scale=0.49]{c1/commtasks}\label{fig:h1}}
     \includegraphics[scale=0.49]{c1/commtasks}\label{fig:h1}}
-  \subfloat[Sync. imbalanced computations]{%
+  \subfloat[Synchronous imbalanced computations]{%
     \includegraphics[scale=0.49]{c1/compt}\label{fig:h2}}
  % \caption{Parallel tasks on homogeneous platform}
   \label{fig:homo}
     \includegraphics[scale=0.49]{c1/compt}\label{fig:h2}}
  % \caption{Parallel tasks on homogeneous platform}
   \label{fig:homo}
@@ -277,7 +285,7 @@ for a warehouse-sized computer.
 %%%%%%%%%%%%%%%%%%%%
 %%    SLIDE 11   %%
 %%%%%%%%%%%%%%%%%%%% 
 %%%%%%%%%%%%%%%%%%%%
 %%    SLIDE 11   %%
 %%%%%%%%%%%%%%%%%%%% 
-\begin{frame}{Energy model for homogeneous platform}    
+\begin{frame}{Energy model for homogeneous platform}    
       The power consumed by a processor divided into two power metrics: the dynamic (\textcolor{red}{$P_d$}) and static   
        (\textcolor{red}{$P_s$}) power. 
     \begin{equation}
       The power consumed by a processor divided into two power metrics: the dynamic (\textcolor{red}{$P_d$}) and static   
        (\textcolor{red}{$P_s$}) power. 
     \begin{equation}
@@ -301,7 +309,7 @@ for a warehouse-sized computer.
 %%    SLIDE 12   %%
 %%%%%%%%%%%%%%%%%%%% 
 
 %%    SLIDE 12   %%
 %%%%%%%%%%%%%%%%%%%% 
 
-\begin{frame}{Energy model for homogeneous platform}
+\begin{frame}{Energy model for homogeneous platform}
        
           The frequency scaling factor is the ratio between the maximum and the new frequency, \textcolor{blue}{$S = \frac{F_{max}}{F_{new}}$}.  \medskip     
               
        
           The frequency scaling factor is the ratio between the maximum and the new frequency, \textcolor{blue}{$S = \frac{F_{max}}{F_{new}}$}.  \medskip     
               
@@ -312,12 +320,12 @@ for a warehouse-sized computer.
          \left( T_1 + \sum_{i=2}^{N} \frac{T_i^3}{T_1^2} \right) +
             P_{s} \cdot S_1  \cdot T_1 \cdot N$
         \end{block}     
          \left( T_1 + \sum_{i=2}^{N} \frac{T_i^3}{T_1^2} \right) +
             P_{s} \cdot S_1  \cdot T_1 \cdot N$
         \end{block}     
-           \textcolor{blue}{$S_1$}: the max. scaling factor\\ 
-           \textcolor{blue}{$P_{d}$}: the dynamic power\\
-           \textcolor{blue}{$P_{s}$}: the static power\\
-           \textcolor{blue}{$T_I$}: the time of the slower task\\ 
-           \textcolor{blue}{$T_i$}: the time of the other tasks\\ 
-           \textcolor{blue}{$N$}:  the number of  nodes
+           \textcolor{blue}{$S_1$}: the maximum scaling factor.\\ 
+           \textcolor{blue}{$P_{d}$}: the dynamic power.\\
+           \textcolor{blue}{$P_{s}$}: the static power.\\
+           \textcolor{blue}{$T_I$}: the execution time of the slower task.\\ 
+           \textcolor{blue}{$T_i$}: the execution time of task i.\\ 
+           \textcolor{blue}{$N$}:  the number of  nodes.
        
 \end{frame}
   
        
 \end{frame}
   
@@ -394,7 +402,7 @@ for a warehouse-sized computer.
      
      \begin{figure}
   \animategraphics[autopause,controls,scale=0.28,buttonsize=0.2cm]{10}{dvfs-homo/a-}{0}{159}
      
      \begin{figure}
   \animategraphics[autopause,controls,scale=0.28,buttonsize=0.2cm]{10}{dvfs-homo/a-}{0}{159}
-
+  %\includegraphics[width=0.6\textwidth]{dvfs-homo/a-159}
   \end{figure}
 \end{frame}
 
   \end{figure}
 \end{frame}
 
@@ -405,10 +413,10 @@ for a warehouse-sized computer.
       \begin{femtoBlock}{}      
         \begin{itemize}
          \small
       \begin{femtoBlock}{}      
         \begin{itemize}
          \small
-           \item The experiments are executed on the simulator SimGrid/SMPI v3.10.\medskip
-           \item The proposed algorithm is applied to the NAS parallel benchmarks.\medskip
+           \item The experiments were executed on the simulator SimGrid/SMPI v3.10.\medskip
+           \item The proposed algorithm was applied to the NAS parallel benchmarks.\medskip
            \item Each node in the cluster has 18 frequency values from \textbf{2.5$GHz$} to \textbf{800$MHz$}.\medskip
            \item Each node in the cluster has 18 frequency values from \textbf{2.5$GHz$} to \textbf{800$MHz$}.\medskip
-           \item The proposed algorithm was evaluated over the A, B, C classes of the benchmarks using 4, 8 or 9 and 16 nodes respectively. \medskip
+           \item The proposed algorithm was evaluated over the A, B and C classes of the benchmarks using 4, 8 or 9 and 16 nodes respectively. \medskip
            \item $P_d=20W$,  $P_s=4W$.
                 \end{itemize}
         \end{femtoBlock}
            \item $P_d=20W$,  $P_s=4W$.
                 \end{itemize}
         \end{femtoBlock}
@@ -438,13 +446,15 @@ for a warehouse-sized computer.
            $S_{opt} = \sqrt[3]{\frac{2}{N} \cdot \frac{P_{dyn}}{P_{static}} \cdot
             \left( 1 + \sum_{i=2}^{N} \frac{T_i^3}{T_1^3}\right) } $
         \end{block}   
            $S_{opt} = \sqrt[3]{\frac{2}{N} \cdot \frac{P_{dyn}}{P_{static}} \cdot
             \left( 1 + \sum_{i=2}^{N} \frac{T_i^3}{T_1^3}\right) } $
         \end{block}   
+        
+        
     \centering {
          %\includegraphics[width=.33\textwidth]{c1/c1.pdf}
          %\qquad
          %\includegraphics[width=.33\textwidth]{c1/c2.pdf}}
            
          
     \centering {
          %\includegraphics[width=.33\textwidth]{c1/c1.pdf}
          %\qquad
          %\includegraphics[width=.33\textwidth]{c1/c2.pdf}}
            
          
-            \includegraphics[width=.55\textwidth]{c1/compare_c.pdf}}
+            \includegraphics[width=.55\textwidth]{c1/compare-c.pdf}}
         
 \end{frame}
 
         
 \end{frame}
 
@@ -456,6 +466,7 @@ for a warehouse-sized computer.
     \vspace{-0.75cm}     
   \begin{figure}
   \animategraphics[autopause,controls,scale=0.28,buttonsize=0.2cm]{10}{homo-model/a-}{0}{356}
     \vspace{-0.75cm}     
   \begin{figure}
   \animategraphics[autopause,controls,scale=0.28,buttonsize=0.2cm]{10}{homo-model/a-}{0}{356}
+  %\includegraphics[width=0.6\textwidth]{homo-model/a-356}
   \end{figure}
 \end{frame}
 
   \end{figure}
 \end{frame}
 
@@ -463,7 +474,7 @@ for a warehouse-sized computer.
 %%%%%%%%%%%%%%%%%%%%
 %%    SLIDE 21   %%
 %%%%%%%%%%%%%%%%%%%% 
 %%%%%%%%%%%%%%%%%%%%
 %%    SLIDE 21   %%
 %%%%%%%%%%%%%%%%%%%% 
-\begin{frame}{Comparing the new model with Rauber model }
+\begin{frame}{\large Comparing the new model with Rauber's model }
  \vspace{0.1cm}    
  \centering
     \includegraphics[width=.45\textwidth]{c1/energy_con}
  \vspace{0.1cm}    
  \centering
     \includegraphics[width=.45\textwidth]{c1/energy_con}
@@ -496,13 +507,13 @@ for a warehouse-sized computer.
 %%%%%%%%%%%%%%%%%%%% 
 
 
 %%%%%%%%%%%%%%%%%%%% 
 
 
-\begin{frame}{Contribution}
+\begin{frame}{The second contribution}
 
 
-\section{\small {Energy optimization of heterogeneous platform}}
+\section{\small {Energy optimization of heterogeneous platform}}
 \begin{center}
 
 
 \begin{center}
 
 
-\bf  \Large \textcolor{blue}{Energy optimization of a parallel application with iterations running over Heterogeneous platform}
+\bf  \Large \textcolor{blue}{Energy optimization of a parallel application with iterations running over Heterogeneous platform}
 \end{center}
  \end{frame}
  
 \end{center}
  \end{frame}
  
@@ -516,7 +527,7 @@ for a warehouse-sized computer.
         \begin{femtoBlock}{} \vspace{-12 mm}
                 \begin{itemize} \small
                   \item   Proposing  \textcolor{blue}{new energy and performance models} for message passing  applications with iterations running  
         \begin{femtoBlock}{} \vspace{-12 mm}
                 \begin{itemize} \small
                   \item   Proposing  \textcolor{blue}{new energy and performance models} for message passing  applications with iterations running  
-                          over a heterogeneous platform (cluster and Grid). \medskip
+                          over a heterogeneous platform (cluster or Grid). \medskip
                    \item  Studying the effect of the scaling factor $S$ on both the \textcolor{blue}{energy consumption  and the performance} of
                           message passing iterative applications.    \medskip                      
                    
                    \item  Studying the effect of the scaling factor $S$ on both the \textcolor{blue}{energy consumption  and the performance} of
                           message passing iterative applications.    \medskip                      
                    
@@ -576,6 +587,7 @@ for a warehouse-sized computer.
   \vspace{-0.5cm}
  \begin{figure}
   \animategraphics[autopause,controls,scale=0.28,buttonsize=0.2cm]{10}{heter-model/a-}{0}{272}
   \vspace{-0.5cm}
  \begin{figure}
   \animategraphics[autopause,controls,scale=0.28,buttonsize=0.2cm]{10}{heter-model/a-}{0}{272}
+  %\includegraphics[width=0.6\textwidth]{heter-model/a-272}
   \end{figure}
  \end{frame}
  
   \end{figure}
  \end{frame}
  
@@ -626,6 +638,7 @@ for a warehouse-sized computer.
  
   \begin{figure}
   \animategraphics[autopause,controls,scale=0.28,buttonsize=0.2cm]{10}{dvfs-heter/a-}{0}{650}
  
   \begin{figure}
   \animategraphics[autopause,controls,scale=0.28,buttonsize=0.2cm]{10}{dvfs-heter/a-}{0}{650}
+ % \includegraphics[width=0.6\textwidth]{dvfs-heter/a-650}
   \end{figure}
 \end{frame}
 
   \end{figure}
 \end{frame}
 
@@ -638,11 +651,11 @@ for a warehouse-sized computer.
 \begin{frame}{Experiments over a heterogeneous cluster  }   
         \begin{itemize}
          \small
 \begin{frame}{Experiments over a heterogeneous cluster  }   
         \begin{itemize}
          \small
-           \item The experiments executed on the simulator SimGrid/SMPI v3.10.\medskip
+           \item The experiments were executed on the simulator SimGrid/SMPI v3.10.\medskip
            \item The scaling algorithm was applied to the NAS parallel benchmarks class C.\medskip
            \item Four types of processors with different computing powers were used.\medskip
            \item The scaling algorithm was applied to the NAS parallel benchmarks class C.\medskip
            \item Four types of processors with different computing powers were used.\medskip
-           \item We ran the benchmarks on different number of nodes ranging from 4 to 144 nodes.\medskip
-           \item The total power consumption of the chosen CPUs  assumed to be composed of $80\%$ for the dynamic power and $20\%$ for the static power.
+           \item The benchmarks were executed with different number of nodes ranging from 4 to 144 nodes.\medskip
+           \item It was assumed that the total power consumption of the CPU consist of 80\% dynamic power and 20\% static power.
                   \medskip
          
         \end{itemize}
                   \medskip
          
         \end{itemize}
@@ -660,7 +673,7 @@ for a warehouse-sized computer.
     \includegraphics[width=0.8\textwidth]{c2/energy_saving.pdf}
     
     \textcolor{blue}{On average, it reduces the energy consumption by \textcolor{red}{29\%} 
     \includegraphics[width=0.8\textwidth]{c2/energy_saving.pdf}
     
     \textcolor{blue}{On average, it reduces the energy consumption by \textcolor{red}{29\%} 
-     for the class C of the NAS benchmarks executed over 8 nodes}
+     for the class C of the NAS Benchmarks executed over 8 nodes}
     
    \end{figure}
 \end{frame} 
     
    \end{figure}
 \end{frame} 
@@ -678,7 +691,7 @@ for a warehouse-sized computer.
     \includegraphics[width=.8\textwidth]{c2/perf_degra.pdf}
    
    \textcolor{blue}{On average, it degrades  by \textcolor{red}{3.8\%} the performance
     \includegraphics[width=.8\textwidth]{c2/perf_degra.pdf}
    
    \textcolor{blue}{On average, it degrades  by \textcolor{red}{3.8\%} the performance
-     of NAS benchmarks class C executed over 8 nodes}
+     of NAS Benchmarks class C executed over 8 nodes}
      \end{figure}
 \end{frame} 
  
      \end{figure}
 \end{frame} 
  
@@ -776,19 +789,21 @@ for a warehouse-sized computer.
 %%    SLIDE 37    %%
 %%%%%%%%%%%%%%%%%%%%
  \begin{frame}{Experiments over Grid'5000}
 %%    SLIDE 37    %%
 %%%%%%%%%%%%%%%%%%%%
  \begin{frame}{Experiments over Grid'5000}
-  \centering
-
+   \textcolor{blue}{The experiments were conducted using three 
+          clusters distributed over one or two sites.}
+           \vspace{-7 mm}
+          \begin{center}
           \includegraphics[width=.5\textwidth]{c2/grid5000-2.pdf}
           \includegraphics[width=.5\textwidth]{c2/grid5000-2.pdf}
-          
-          \vspace{-3 mm}
-          \textcolor{blue}{Two experiments were conducted: over one site and two sites 
-          each one with three clusters }
-          
-              \vspace{1mm}
-
+          \end{center}          
+      \vspace{-10 mm}
+  \textcolor{blue}{Grid'5000 power measurement tools were used.} 
+        \vspace{-9 mm}
+  \begin{center}
           \includegraphics[width=.5\textwidth]{c2/power_consumption.pdf}
           \includegraphics[width=.5\textwidth]{c2/power_consumption.pdf}
+          \end{center}
           
           
-        \textcolor{blue}{Grid'5000 power measurement tools were used} 
+      
 \end{frame}   
 
 
 \end{frame}   
 
 
@@ -802,7 +817,7 @@ for a warehouse-sized computer.
    \begin{minipage}{0.4\textwidth}
        %\textcolor{blue}{Execution the NAS class D on 16 nodes saves the energy by  
         %\textcolor{red}{30\%}}
    \begin{minipage}{0.4\textwidth}
        %\textcolor{blue}{Execution the NAS class D on 16 nodes saves the energy by  
         %\textcolor{red}{30\%}}
-        \textcolor{blue}{The energy saving =  \textcolor{red}{30\%}}
+     \small \textcolor{blue}{The average energy saving =  \textcolor{red}{30\%}}
    \end{minipage}  
      \begin{minipage}{0.55\textwidth}
         \begin{figure}[h!]
    \end{minipage}  
      \begin{minipage}{0.55\textwidth}
         \begin{figure}[h!]
@@ -813,7 +828,7 @@ for a warehouse-sized computer.
          \begin{minipage}{0.4\textwidth}
            %\textcolor{blue}{Execution the NAS class D on 16 nodes degrades the 
                 %performance by \textcolor{red}{3.2\%}}
          \begin{minipage}{0.4\textwidth}
            %\textcolor{blue}{Execution the NAS class D on 16 nodes degrades the 
                 %performance by \textcolor{red}{3.2\%}}
-              \textcolor{blue}{The performance degradation  =  \textcolor{red}{3.2\%}}  
+      \small  \textcolor{blue}{The average performance degradation  =  \textcolor{red}{3.2\%}}  
         \end{minipage}
        \begin{minipage}{0.55\textwidth}
          \begin{figure}[h!] 
         \end{minipage}
        \begin{minipage}{0.55\textwidth}
          \begin{figure}[h!] 
@@ -864,10 +879,10 @@ for a warehouse-sized computer.
 %%%%%%%%%%%%%%%%%%%%
 %%    SLIDE 40    %%
 %%%%%%%%%%%%%%%%%%%%
 %%%%%%%%%%%%%%%%%%%%
 %%    SLIDE 40    %%
 %%%%%%%%%%%%%%%%%%%%
-\begin{frame}{Contribution}
+\begin{frame}{The third contribution}
 \section{\small {Energy optimization of asynchronous applications}}
 \begin{center}
 \section{\small {Energy optimization of asynchronous applications}}
 \begin{center}
-\bf  \Large \textcolor{blue}{Energy optimization of asynchronous  message passing iterative applications}
+\bf  \Large \textcolor{blue}{Energy optimization of asynchronous iterative message passing  applications}
 \end{center}
  \end{frame}
 
 \end{center}
  \end{frame}
 
@@ -880,7 +895,8 @@ for a warehouse-sized computer.
 \textcolor{blue}{The execution of a synchronous parallel iterative application over a grid }
 \vspace{-8 mm}
 \begin{figure}
 \textcolor{blue}{The execution of a synchronous parallel iterative application over a grid }
 \vspace{-8 mm}
 \begin{figure}
-  \animategraphics[autopause,controls,scale=0.25,buttonsize=0.2cm]{10}{syn/a-}{0}{503}
+ \animategraphics[autopause,controls,scale=0.25,buttonsize=0.2cm]{10}{syn/a-}{0}{503}
+ %\includegraphics[width=0.6\textwidth]{syn/a-503}
   \end{figure}
 \end{frame}
 
   \end{figure}
 \end{frame}
 
@@ -893,7 +909,8 @@ for a warehouse-sized computer.
 \textcolor{blue}{The execution of an asynchronous parallel iterative application over a grid }
 \vspace{-8 mm}
 \begin{figure}
 \textcolor{blue}{The execution of an asynchronous parallel iterative application over a grid }
 \vspace{-8 mm}
 \begin{figure}
-  \animategraphics[autopause,controls,scale=0.25,buttonsize=0.2cm]{10}{asyn/a-}{0}{440}
+ \animategraphics[autopause,controls,scale=0.25,buttonsize=0.2cm]{10}{asyn/a-}{0}{440}
+ %\includegraphics[width=0.6\textwidth]{asyn/a-440}
   \end{figure}
 \end{frame}
 
   \end{figure}
 \end{frame}
 
@@ -907,6 +924,7 @@ for a warehouse-sized computer.
 \vspace{-8 mm}
 \begin{figure}
   \animategraphics[autopause,controls,scale=0.25,buttonsize=0.2cm]{10}{asyn+dvfs/a-}{0}{314}
 \vspace{-8 mm}
 \begin{figure}
   \animategraphics[autopause,controls,scale=0.25,buttonsize=0.2cm]{10}{asyn+dvfs/a-}{0}{314}
+  %\includegraphics[width=0.6\textwidth]{asyn+dvfs/a-314}
   \end{figure}
 \end{frame}
 
   \end{figure}
 \end{frame}
 
@@ -1017,7 +1035,7 @@ for a warehouse-sized computer.
 \centering
     \includegraphics[scale=0.42]{c3/energy_saving.eps}
 
 \centering
     \includegraphics[scale=0.42]{c3/energy_saving.eps}
 
- \centering  The average of energy saving  = \textcolor{red}{22\%}
+ \centering  The average energy saving  = \textcolor{red}{22\%}
 \end{frame} 
 
 
 \end{frame} 
 
 
@@ -1047,8 +1065,8 @@ for a warehouse-sized computer.
     \includegraphics[width=0.53\textwidth]{c3/perf-deg-compare.eps}
    \end{figure}
     \vspace{-5 mm}
     \includegraphics[width=0.53\textwidth]{c3/perf-deg-compare.eps}
    \end{figure}
     \vspace{-5 mm}
-     \centering
-The energy saving = \textcolor{red}{26.93\%}, the average speed-up =  \textcolor{red}{21.48\%}
+     \centering \footnotesize
+The average energy saving = \textcolor{red}{26.93\%}, the average speed-up =  \textcolor{red}{21.48\%}
 \end{frame} 
 
 
 \end{frame} 
 
 
@@ -1072,21 +1090,21 @@ The energy saving = \textcolor{red}{26.93\%}, the average speed-up =  \textcolor
 \section{Conclusions and Perspectives}
 \begin{itemize}
 
 \section{Conclusions and Perspectives}
 \begin{itemize}
 
-\small  \barrow  Three \textcolor{blue}{ new energy consumption and performance} models were proposed for synchronous and asynchronous parallel applications with iterations running over 
-\textcolor{blue}{homogeneous and  heterogeneous clusters and grids}.  
+\small  \barrow  Three \textcolor{blue}{ new energy consumption and performance} models were proposed for synchronous or asynchronous parallel applications with iterations running over 
+\textcolor{blue}{homogeneous and  heterogeneous clusters or grids}.  
       
 
 
       
 
 
-\small \barrow \textcolor{blue}{A new objective function} was proposed to optimize both the energy consumption and the performance.
+\small \barrow \textcolor{blue}{A new objective function} to optimize both the energy consumption and the performance was proposed.
 
 \small \barrow \textcolor{blue}{New online frequency selecting algorithms} for clusters and grids were developed.
 
 \small \barrow The proposed algorithms were applied to the \textcolor{blue}{NAS parallel benchmarks} and \textcolor{blue}{the
 Multi-splitting} method.
 
 
 \small \barrow \textcolor{blue}{New online frequency selecting algorithms} for clusters and grids were developed.
 
 \small \barrow The proposed algorithms were applied to the \textcolor{blue}{NAS parallel benchmarks} and \textcolor{blue}{the
 Multi-splitting} method.
 
-\small \barrow The proposed algorithms were evaluated over the \textcolor{blue}{SimGrid simulator} and over  \textcolor{blue}{Grid'5000 testbed}.
+\small \barrow The proposed algorithms were evaluated over the \textcolor{blue}{SimGrid simulator} and over  the \textcolor{blue}{Grid'5000 testbed}.
 
 
-\small  \barrow All the proposed methods were compared to either \textcolor{blue}{Rauber and Rünger's  method} or  \textcolor{blue}{the EDP objective function}.
+\small  \barrow All the proposed methods were compared to either \textcolor{blue}{Rauber and Rünger's  method} or to the \textcolor{blue}{EDP objective function}.
 
 
 \end{itemize}
 
 
 \end{itemize}