X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/ThesisAhmed.git/blobdiff_plain/240aac4a27721a2cb9d0e2ccd75e6e8970ce90c8..HEAD:/thesis-presentation/AhmedSlides.tex?ds=inline diff --git a/thesis-presentation/AhmedSlides.tex b/thesis-presentation/AhmedSlides.tex index d4fd8c3..6dbbd81 100644 --- a/thesis-presentation/AhmedSlides.tex +++ b/thesis-presentation/AhmedSlides.tex @@ -19,10 +19,10 @@ \todo[color=red!10,#1]{\sffamily\textbf{JC:} #2}\xspace} \definecolor{myblue}{RGB}{0,29,119} \newcommand{\Xsub}[2]{{\ensuremath{#1_\mathit{#2}}}} - +\usepackage{fixltx2e} %% used to put some subscripts lower, and make them more legible \newcommand{\fxheight}[1]{\ifx#1\relax\relax\else\rule{0pt}{1.52ex}#1\fi} - +\usepackage{ragged2e} \newcommand{\CL}{\Xsub{C}{L}} \newcommand{\Dist}{\mathit{Dist}} \newcommand{\EdNew}{\Xsub{E}{dNew}} @@ -75,8 +75,8 @@ %Iterations using CPU Frequency Scaling} \vspace{2cm} -\title{ \textbf{Energy Consumption Optimization of Parallel Applications with Iterations using CPU Frequency Scaling} \\ \vspace{0.2cm} \hspace{1.8cm}\textbf{\textcolor{cyan}{\small PhD Dissertation Defense}}}\vspace{-1cm} -\author{ \textbf{Ahmed Badri Muslim Fanfakh} \\ \vspace{0.5cm}\small Under Supervision: \textcolor{cyan}{\small Raphaël COUTURIER and Jean-Claude CHARR} \\\vspace{0.1cm} \textcolor{blue}{ University of Franche-Comté - FEMTO-ST - DISC Dept. - AND Team} \\ ~~~~~~~~~~~~~~~~~~~~~ \textbf{\textcolor{blue}{ 17 October 2016 }}} +\title{ \textbf{Energy Consumption Optimization of Parallel Applications with Iterations using CPU Frequency Scaling} \\ \vspace{0.2cm} \hspace{1.8cm}\textbf{\textcolor{cyan}{\small PhD Dissertation Defense}}}\vspace{-0.5cm} +\author{ \textbf{Ahmed Badri Muslim Fanfakh} \\ \vspace{0.5cm}\small Under the supervision of: \\ \textcolor{cyan}{\small Raphaël COUTURIER and Jean-Claude CHARR} \\\vspace{0.1cm} \textcolor{blue}{ UBFC - FEMTO-ST - DISC Dept. - AND Team} \\ ~~~~~~~~~~~~~~~~~~~~~ \textbf{\textcolor{blue}{ 17 October 2016 }}} \date{} \vspace{-3cm} @@ -109,15 +109,57 @@ \tableofcontents \end{frame} +%%%%%%%%%%%%%%%%%%%% +%% SLIDE 03 %% +%%%%%%%%%%%%%%%%%%%% +\begin{frame}{Definition of parallel computing} +\section{\small {Introduction and Problem definition}} + \centering + \includegraphics[width=0.99\textwidth]{para.pdf} +\end{frame} + + + +\begin{frame}{Execution of synchronous parallel tasks} +\vspace{-0.5 cm} +\begin{figure} + \centering + \subfloat[Synchronous imbalanced communications]{% + \includegraphics[scale=0.49]{c1/commtasks}\label{fig:h1}} + \subfloat[Synchronous imbalanced computations]{% + \includegraphics[scale=0.49]{c1/compt}\label{fig:h2}} + % \caption{Parallel tasks on homogeneous platform} + \label{fig:homo} +\end{figure} + \end{frame} + + %%%%%%%%%%%%%%%%%%%% +%% SLIDE 07 %% +%%%%%%%%%%%%%%%%%%%% + + +\begin{frame}{\large Synchronous and asynchronous iterative methods } +\vspace{-0.5 cm} +\begin{figure} + +\includegraphics[scale=0.42]{syn_tasks.pdf} +\vspace{0.6 cm} +\includegraphics[scale=0.42]{Asyn_tasks.pdf} +\end{figure} + + + \end{frame} + + %%%%%%%%%%%%%%%%%%%% %% SLIDE 03 %% %%%%%%%%%%%%%%%%%%%% -\begin{frame}{Introduction and problem definition} - \section{\small {Introduction and Problem definition}} - \bf \textcolor{blue}{Approaches to increase the computing power:} +\begin{frame}{Approaches to get more computing power} + + %\bf \textcolor{blue}{} \begin{minipage}{0.5\textwidth} - \textcolor{blue}{1)} \small \bf \textcolor{black}{Increasing the frequency of processor} + \textcolor{blue}{1)} \small \bf \textcolor{black}{Increase the frequency of a processor.\\ (limited due to overheating)} \end{minipage}% \begin{minipage}{0.6\textwidth} @@ -128,7 +170,11 @@ \end{minipage}% \vspace{0.2cm} \begin{minipage}{0.5\textwidth} - \textcolor{blue}{2)} \small \bf \textcolor{black}{Increasing the number of nodes} + \textcolor{blue}{2)} \small \bf \textcolor{black}{Increase the number of computing + units.} + + \textcolor{black}{The supercomputer Tianhe-2 has more than 3 million cores and consumes around 17.8 megawatts.} + \end{minipage}% \begin{minipage}{0.6\textwidth} \begin{figure}[h!] @@ -139,84 +185,75 @@ -%%%%%%%%%%%%%%%%%%%% -%% SLIDE 04 %% -%%%%%%%%%%%%%%%%%%%% -\begin{frame}{Introduction and problem definition} - \bf \textcolor{blue}{Processor frequency and its energy consumption} - \vspace{0.4cm} - \begin{minipage}{0.5\textwidth} - \textcolor{blue}{$\blacktriangleright$} - \small \bf \textcolor{black}{ The power consumption of a processor increases exponentially when its - frequency is increased} - \end{minipage}% - \begin{minipage}{0.5\textwidth} - \begin{figure}[h!] - \includegraphics[width=0.7\textwidth]{fig/freq-power} - \end{figure} - \end{minipage}% - - \begin{minipage}{0.5\textwidth} - \textcolor{blue}{$\blacktriangleright$} - \small \bf \textcolor{black}{The biggest power consumption is consumed by a processor in the computing node} - - \end{minipage}% - \begin{minipage}{0.6\textwidth} - \begin{figure}[h!] - \includegraphics[width=0.9\textwidth]{fig/node-power} - \end{figure} - \end{minipage}% - - \end{frame} - %%%%%%%%%%%%%%%%%%% -%% SLIDE 05 %% +%% SLIDE 04 %% %%%%%%%%%%%%%%%%%%%% -\begin{frame}{Introduction and problem definition} - \vspace{0.1cm} - \bf \textcolor{blue}{Techniques for energy consumption reduction} - +\begin{frame}{Techniques for energy consumption reduction} + \textcolor{blue}{1)} \bf \textcolor{black}{Switch-off idle nodes method} \vspace{-0.9cm} \begin{figure} - \animategraphics[autopause,loop,controls,scale=0.25,buttonsize=0.2cm]{200}{on-off/a-}{0}{69} + \animategraphics[autopause,controls,scale=0.26,buttonsize=0.2cm]{200}{on-off/a-}{0}{111} + %\includegraphics[width=0.6\textwidth]{on-off/a-69} \end{figure} \end{frame} %%%%%%%%%%%%%%%%%%%% -%% SLIDE 06 %% +%% SLIDE 05 %% %%%%%%%%%%%%%%%%%%%% \begin{frame}{Techniques for energy consumption reduction} - \textcolor{blue}{2)} \bf \textcolor{black}{Dynamic voltage and frequency Scaling (DVFS)} - \vspace{-0.5cm} + \textcolor{blue}{2)} \bf \textcolor{black}{Dynamic Voltage and Frequency Scaling (DVFS)} + \vspace{-0.9cm} \begin{figure} - \animategraphics[autopause,controls,scale=0.25,buttonsize=0.2cm]{10}{DVFS-meq/a-}{0}{109} + \animategraphics[autopause,controls,scale=0.26,buttonsize=0.2cm]{10}{DVFS-meq/a-}{0}{175} + %\includegraphics[width=0.6\textwidth]{DVFS-meq/a-109} \end{figure} \end{frame} - - +%%%%%%%%%%%%%%%%%%%% +%% SLIDE 06 %% +%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%% %% SLIDE 07 %% %%%%%%%%%%%%%%%%%%%% -\begin{frame}{Using the energy reduction method} -\section{\small {Using the energy reduction method}} -\begin{block}{\textcolor{white}{Why we used DVFS method:}} -\begin{itemize} - \item \textcolor{black}{It used to reduce the energy while keeping all node working, thus it is more conventional with parallel computing.} - \item \textcolor{black}{It has a very small overhead compared to switch-off idle nodes method.} +\begin{frame}{Motivations} +\vspace{0.05cm} +\section{\small {Motivations}} +\textcolor{blue}{Why we used the DVFS method:} +\vspace{-0.49cm} +\begin{minipage}{0.5\textwidth} + \vspace{-0.49cm} + \begin{itemize} + \item \small \textcolor{black}{ The CPU is the component that consumes the highest amount of energy in a node \textsuperscript{1}. } + \end{itemize} -\end{block} - \vspace{0.1cm} + \end{minipage}% + \begin{minipage}{0.5\textwidth} + \vspace{-0.49cm} + \begin{figure}[h!] + \includegraphics[width=0.85\textwidth]{fig/node-power} + + \end{figure} + \end{minipage}% + + \begin{itemize} \item \small \textcolor{black}{DVFS reduces the energy consumption while + keeping all the nodes working.} + \item \small \textcolor{black}{It has a very small overhead compared to switching-off the idle nodes.} \end{itemize} + +\vspace{-0.12cm} + \begin{block}{\textcolor{white}{Challenge and Objective}} - \textcolor{blue}{Challenge:} \textcolor{black}{DVFS is used to reduce the energy, \textcolor{blue}{but} it degrades the performance simultaneously.} + \small \textcolor{blue}{Challenge:} \textcolor{black}{DVFS is used to reduce the energy consumption, \textcolor{blue}{but} it also degrades the performance of the CPU.} \vspace{0.1cm} - \textcolor{blue}{Objective:} \textcolor{black}{Optimizing both energy consumption and performance of a parallel application at the same time when DVFS is used.} + \small \textcolor{blue}{Objective:} \textcolor{black}{Applying the DVFS to minimize the energy consumption while maintaining the performance of the parallel application.} \end{block} + + \tiny \textsuperscript{1} Fan, X., Weber, W., and Barroso, L. A. 2007. Power provisioning +for a warehouse-sized computer. \end{frame} @@ -227,13 +264,14 @@ %%%%%%%%%%%%%%%%%%%% -\begin{frame}{Contributions} -\section{\small {Contributions}} -\subsection{\small {3.1 Energy optimization of homogeneous platform}} +\begin{frame}{The first contribution} + +\section{\small {Energy optimization of a homogeneous platform}} +%\vspace{-3cm} + % \includegraphics[width=0.6\textwidth]{white.pdf} + \begin{center} -\bf \textcolor{black}{First contribution} \\ -\vspace{1cm} -\bf \Large \textcolor{blue}{Energy optimization of homogeneous platform} +\bf \Large \textcolor{blue}{Energy optimization of a parallel application with iterations running over a homogeneous platform} \end{center} \end{frame} @@ -244,41 +282,59 @@ %%%%%%%%%%%%%%%%%%%% \begin{frame}{Objectives} - \begin{femtoBlock}{} \vspace{-12 mm} - \begin{itemize} \small - \item Study the effect of the scaling factor $S$ on \textbf{energy consumption} of parallel iterative applications such as NAS - Benchmarks. \includegraphics[width=.06\textwidth]{c1/nasa.pdf} \medskip - \item Study the effect of the scaling factor $S$ on \textbf{performance} of these benchmarks.\medskip - \item Discovering the \textbf{energy-performance trade-off relation} when changing the frequency.\medskip - \item We propose an algorithm for selecting the scaling factor $S$ producing \textbf {optimal trade-off} between the energy and performance. \medskip - \item Improving Rauber and Rünger's\footnote{\tiny Thomas Rauber and Gudula Rünger. Analytical modeling and simulation of the - energy consumption \\ \quad ~ ~\quad of independent tasks. In Proceedings of the Winter Simulation Conference, 2012.} method that our method best on. + + \begin{itemize} \small \justifying + + \item Studying the effect of the frequency scaling on the \textbf{energy consumption and performance } of parallel applications with iterations. \medskip + + \item Discovering the \textbf{energy-performance trade-off relation} when changing the frequency of the processor.\medskip + \item Proposing an algorithm for selecting the scaling factor that produces \textbf {the good trade-off} between the energy consumption and the performance. \medskip + \item Comparing the proposed algorithm to existing methods. + + + %\footnote{\tiny Thomas Rauber and Gudula Rünger. Analytical modeling and simulation of the + %energy consumption \\ \quad ~ ~\quad of independent tasks. In Proceedings of the Winter Simulation Conference, 2012.} method that our method best on. \end{itemize} - \let\thefootnote\relax\footnote{} - \vspace{-10 mm} - \end{femtoBlock} + %\let\thefootnote\relax\footnote{} + + \end{frame} + %%%%%%%%%%%%%%%%%%%% -%% SLIDE 10 %% +%% SLIDE 13 %% %%%%%%%%%%%%%%%%%%%% +\begin{frame}{Performance evaluation of MPI programs} +\small The frequency scaling factor is the ratio between the maximum and the new frequency, \textcolor{blue}{$S = \frac{F_{max}}{F_{new}}$}. + \vspace{5 mm} + + \begin{femtoBlock}{} + \vspace{-5 mm} + \begin{block}{\small Execution time prediction model} + \centering{ $ \textcolor{red}{T_{new}} = \textcolor{blue}{T_{Max Comp Old} \cdot S + T_{{Min Comm Old}}}$} + \end{block} + \vspace{5 mm} + \centering{\includegraphics[width=.4\textwidth]{c1/cg_per} + \quad% + \includegraphics[width=.4\textwidth]{c1/lu_pre}} + \vspace{1 mm} + + \small The maximum normalized error for CG=0.0073 \textbf{(the smallest)} and LU=0.031 \textbf{(the worst)}. + \end{femtoBlock} +\end{frame} + + + + + + + + -\begin{frame}{Parallel tasks execution over Homo. Platform} -\vspace{-0.5 cm} -\begin{figure} - \centering - \subfloat[Sync. imbalanced communications]{% - \includegraphics[scale=0.49]{c1/commtasks}\label{fig:h1}} - \subfloat[Sync. imbalanced computations]{% - \includegraphics[scale=0.49]{c1/compt}\label{fig:h2}} - \caption{Parallel tasks on homogeneous platform} - \label{fig:homo} -\end{figure} - \end{frame} @@ -286,69 +342,56 @@ %%%%%%%%%%%%%%%%%%%% %% SLIDE 11 %% %%%%%%%%%%%%%%%%%%%% -\begin{frame}{Energy model for homogeneous platform} - The power consumed by a processor divided into two power metrics: the dynamic (\textcolor{red}{$P_d$}) and static - (\textcolor{red}{$P_s$}) power. +\begin{frame}{Energy model for a homogeneous platform} + The power consumed by a processor is divided into two power metrics: the dynamic (\textcolor{red}{$P_d$}) and the static + (\textcolor{red}{$P_s$}) powers. \begin{equation} \label{eq:pd} \textcolor{red}{ P_d} = \textcolor{blue}{\alpha \cdot CL \cdot V^2 \cdot F} \end{equation} \scriptsize \underline{Where}: \\ - \scriptsize {\textcolor{blue}{$\alpha$}: switching activity \hspace{15 mm} \textcolor{blue}{$CL$}: load capacitance\\ - \textcolor{blue}{$V$} the supply voltage \hspace{14 mm} \textcolor{blue}{$F$}: operational frequency} + \scriptsize {\textcolor{blue}{$\alpha$}: switching activity. \hspace{15 mm} \textcolor{blue}{$CL$}: load capacitance [F].\\ + \textcolor{blue}{$V$}: the supply voltage [V]. \hspace{8 mm} \textcolor{blue}{$F$}: operational frequency [Hz].} \begin{equation} \label{eq:ps} \small \textcolor{red}{P_s} = \textcolor{blue}{V \cdot N_{trans} \cdot K_{design} \cdot I_{Leak}} \end{equation} \underline{Where}:\\ - \scriptsize{ \textcolor{blue}{$V$}: the supply voltage. \hspace{28 mm} \textcolor{blue}{$N_{trans}$}: number of transistors. \\ - \textcolor{blue}{$K_{design}$}: design dependent parameter. \hspace{8 mm} \textcolor{blue}{$I_{leak}$}: technology dependent - parameter.} + \scriptsize{ \textcolor{blue}{$V$}: the supply voltage [V]. \hspace{19 mm} \textcolor{blue}{$N_{trans}$}: number of transistors. \\ + \textcolor{blue}{$K_{design}$}: design dependent parameter. \hspace{3 mm} \textcolor{blue}{$I_{leak}$}: technology dependent + parameter [A].} + + \end{frame} + + %%%%%%%%%%%%%%%%%%%% %% SLIDE 12 %% %%%%%%%%%%%%%%%%%%%% -\begin{frame}{Energy model for homogeneous platform} - - The frequency scaling factor is the ratio between the maximum and the new frequency, \textcolor{blue}{$S = \frac{F_{max}}{F_{new}}$}. \medskip - +\begin{frame}{Energy model for a homogeneous platform} + \vspace{-0.77cm} + \begin{figure} + \animategraphics[autopause,controls,scale=0.3,buttonsize=0.2cm]{10}{homo-model/a-}{0}{441} + %\includegraphics[width=0.6\textwidth]{homo-model/a-356} + \end{figure} - - \begin{block}{\small Rauber and Rünger's energy model} - $ E = P_{d} \cdot S_1^{-2} \cdot - \left( T_1 + \sum_{i=2}^{N} \frac{T_i^3}{T_1^2} \right) + - P_{s} \cdot S_1 \cdot T_1 \cdot N$ - \end{block} - \textcolor{blue}{$S_1$}: the max. scaling factor\\ - \textcolor{blue}{$P_{d}$}: the dynamic power\\ - \textcolor{blue}{$P_{s}$}: the static power\\ - \textcolor{blue}{$T_I$}: the time of the slower task\\ - \textcolor{blue}{$T_i$}: the time of the other tasks\\ - \textcolor{blue}{$N$}: the number of nodes + % \begin{block}{\small Rauber and Rünger's energy model} + %$ E = P_{d} \cdot S_1^{-2} \cdot + %\left( T_1 + \sum_{i=2}^{N} \frac{T_i^3}{T_1^2} \right) + + % P_{s} \cdot S_1 \cdot T_1 \cdot N$ + %\end{block} + % \textcolor{blue}{$S_1$}: the maximum scaling factor.\\ + % \textcolor{blue}{$P_{d}$}: the dynamic power.\\ + % \textcolor{blue}{$P_{s}$}: the static power.\\ + % \textcolor{blue}{$T_I$}: the execution time of the slower task.\\ + % \textcolor{blue}{$T_i$}: the execution time of task i.\\ + % \textcolor{blue}{$N$}: the number of nodes. + + \end{frame} - - -%%%%%%%%%%%%%%%%%%%% -%% SLIDE 13 %% -%%%%%%%%%%%%%%%%%%%% -\begin{frame}{Performance evaluation of MPI programs} - \begin{femtoBlock}{} - \vspace{-5 mm} - \begin{block}{\small Execution time prediction model} - \centering{ $ \textcolor{red}{T_{new}} = \textcolor{blue}{T_{Max Comp Old} \cdot S + T_{{Min Comm Old}}}$} - \end{block} - \vspace{10 mm} - \centering{\includegraphics[width=.4\textwidth]{c1/cg_per} - \quad% - \includegraphics[width=.4\textwidth]{c1/lu_pre}} - \vspace{5 mm} - - \small The maximum normalized error for CG=0.0073 \textbf{(the smallest)} and LU=0.031 \textbf{(the worst)}. - \end{femtoBlock} -\end{frame} @@ -374,9 +417,9 @@ %\vspace{-0.3cm} \small \begin{block}{\small Our objective function} - \centering{$\textbf{\emph {MaxDist}} = \max_{j=1,2,\dots ,F} - (\overbrace{P_{Norm}(S_j)}^{{Maximize}} - - \overbrace{E_{Norm}(S_j)}^{{Minimize}} )$} + \centering{$\textbf{\emph {\textcolor{red}{MaxDist}}} = \max_{j=1,2,\dots ,F} + (\overbrace{P_{Norm}(S_j)}^{{\textcolor{blue}{Maximize}}} - + \overbrace{E_{Norm}(S_j)}^{{\textcolor{blue}{Minimize}}} )$} \end{block} \end{femtoBlock} @@ -386,39 +429,39 @@ %%%%%%%%%%%%%%%%%%%% %% SLIDE 15 %% %%%%%%%%%%%%%%%%%%%% - \begin{frame}{Scaling factor selection algorithm} -\vspace{-0.75cm} - \begin{center} - \includegraphics[width=.56 \textwidth]{c1/algo-homo} - \end{center} + %\begin{frame}{Scaling factor selection algorithm} +%\vspace{-0.75cm} + % \begin{center} + %\includegraphics[width=.56 \textwidth]{c1/algo-homo} + %\end{center} -\end{frame} +%\end{frame} %%%%%%%%%%%%%%%%%%%% %% SLIDE 16 %% %%%%%%%%%%%%%%%%%%%% -\begin{frame}{Scaling algorithm example} +\begin{frame}{Scaling factor selection algorithm} \vspace{-0.75cm} \begin{figure} - \animategraphics[autopause,controls,scale=0.28,buttonsize=0.2cm]{10}{dvfs-homo/a-}{0}{159} - + \animategraphics[autopause,controls,scale=0.29,buttonsize=0.2cm]{10}{dvfs-homo/a-}{0}{335} + %\includegraphics[width=0.6\textwidth]{dvfs-homo/a-159} \end{figure} \end{frame} %%%%%%%%%%%%%%%%%%%% %% SLIDE 17 %% %%%%%%%%%%%%%%%%%%%% -\begin{frame}{Experimental results } +\begin{frame}{Experiment over SimGrid } \begin{femtoBlock}{} \begin{itemize} \small - \item Our experiments are executed on the simulator SimGrid/SMPI v3.10.\medskip - \item Our algorithm is applied to NAS parallel benchmarks.\medskip + \item The experiments were executed on the simulator SimGrid/SMPI v3.10.\medskip + \item The proposed algorithm was applied to the NAS parallel benchmarks.\medskip \item Each node in the cluster has 18 frequency values from \textbf{2.5$GHz$} to \textbf{800$MHz$}.\medskip - \item We run the classes A, B and C on 4, 8 or 9 and 16 nodes respectively.\medskip - \item The dynamic power with the highest frequency is equal to \textbf{20 $W$} and the power static is equal to \textbf{4 $W$}. + \item The proposed algorithm was evaluated over the A, B and C classes of the benchmarks using 4, 8 or 9 and 16 nodes respectively. \medskip + \item $P_d=20W$, $P_s=4W$. \end{itemize} \end{femtoBlock} \end{frame} @@ -434,6 +477,8 @@ \includegraphics[width=.35\textwidth]{c1/cg} \includegraphics[width=.35\textwidth]{c1/bt}} +\hspace{0.5cm} + \centering {\includegraphics[width=.55\textwidth]{c1/results.pdf}} \end{femtoBlock} \end{frame} @@ -443,42 +488,46 @@ %% SLIDE 19 %% %%%%%%%%%%%%%%%%%%%% \begin{frame}{Results comparison} - \begin{block}{\small Rauber and Rünger's optimal scaling factor} - $S_{opt} = \sqrt[3]{\frac{2}{N} \cdot \frac{P_{dyn}}{P_{static}} \cdot - \left( 1 + \sum_{i=2}^{N} \frac{T_i^3}{T_1^3}\right) } $ - \end{block} - \centering { - %\includegraphics[width=.33\textwidth]{c1/c1.pdf} - %\qquad - %\includegraphics[width=.33\textwidth]{c1/c2.pdf}} - + \small \textcolor{blue}{Rauber and Rünger's scaling factor \textcolor{black}{ \tiny \textsuperscript{2}}} - \includegraphics[width=.55\textwidth]{c1/compare_c.pdf}} + \vspace{2 mm} + + $S_{opt} = \sqrt[3]{\frac{2}{N} \cdot \frac{P_{dyn}}{P_{static}} \cdot + \left( 1 + \sum_{i=2}^{N} \frac{T_i^3}{T_1^3}\right) } $ + + \begin{center} + \includegraphics[width=.55\textwidth]{c1/compare-c.pdf} + \end{center} + + +\vspace{-2 mm} + \tiny \textsuperscript{2} Thomas Rauber and Gudula Rünger. Analytical modeling and simulation of the energy consumption of independent tasks. In Proceedings of the Winter Simulation Conference, 2012. \end{frame} %%%%%%%%%%%%%%%%%%%% %% SLIDE 20 %% %%%%%%%%%%%%%%%%%%%% -\begin{frame}{The proposed new energy model} - \vspace{-0.75cm} - \begin{figure} - \animategraphics[autopause,controls,scale=0.28,buttonsize=0.2cm]{10}{homo-model/a-}{0}{356} - \end{figure} -\end{frame} +%\begin{frame}{The proposed new energy model} + % \vspace{-0.75cm} + %\begin{figure} + % \animategraphics[autopause,controls,scale=0.28,buttonsize=0.2cm]{10}{homo-model/a-}{0}{356} + %\includegraphics[width=0.6\textwidth]{homo-model/a-356} + % \end{figure} +%\end{frame} %%%%%%%%%%%%%%%%%%%% %% SLIDE 21 %% %%%%%%%%%%%%%%%%%%%% -\begin{frame}{Comparing the new model with Rauber model } - \vspace{0.1cm} - \centering - \includegraphics[width=.45\textwidth]{c1/energy_con} +%\begin{frame}{\large Comparing the new model with Rauber's model } +% \vspace{0.1cm} +% \centering + %\includegraphics[width=.45\textwidth]{c1/energy_con} - \includegraphics[width=.5\textwidth]{c1/compare-scales} -\end{frame} + %\includegraphics[width=.5\textwidth]{c1/compare-scales} +%\end{frame} @@ -505,13 +554,13 @@ %%%%%%%%%%%%%%%%%%%% -\begin{frame}{Contribution} +\begin{frame}{The second contribution} -\subsection{\small {3.2 Energy optimization of heterogeneous platform}} +\section{\small {Energy optimization of a heterogeneous platform}} \begin{center} -\bf \textcolor{black}{Second contribution} \\ -\vspace{1cm} -\bf \Large \textcolor{blue}{Energy optimization of Heterogeneous platform} + + +\bf \Large \textcolor{blue}{Energy optimization of a parallel application with iterations running over a Heterogeneous platform} \end{center} \end{frame} @@ -524,13 +573,13 @@ \begin{frame}{Objectives} \begin{femtoBlock}{} \vspace{-12 mm} \begin{itemize} \small - \item Evaluating the \textcolor{blue}{new energy and performance models} of message passing applications with iterations running - over a heterogeneous platform (cluster and Grid). \medskip - \item Study the effect of the scaling factor $S$ on both \textcolor{blue}{energy consumption and the performance} of + \item Proposing \textcolor{blue}{new energy and performance models} for message passing applications with iterations running + over a heterogeneous platform (cluster or Grid). \medskip + \item Studying the effect of the scaling factor $S$ on both the \textcolor{blue}{energy consumption and the performance} of message passing iterative applications. \medskip - \item Computing the vector of scaling factors ($S_1, S_2, ..., S_n$) producing \textcolor{blue} {optimal trade-off} between - energy consumption and performance. + \item Computing the vector of scaling factors ($S_1, S_2, ..., S_n$) producing \textcolor{blue} {the good trade-off} between + the energy consumption and the performance. \end{itemize} \vspace{-10 mm} @@ -564,27 +613,28 @@ %%%%%%%%%%%%%%%%%%%% %% SLIDE 25 %% %%%%%%%%%%%%%%%%%%%% - \begin{frame}{The energy consumption model} - -The overall energy consumption of a message passing synchronous distributed application executed over a - heterogeneous platform is computed as follows: - \begin{multline} - \label{eq:energy} - \textcolor{red}{E} = \textcolor{blue}{\sum_{i=1}^{N} {(S_i^{-2} \cdot Pd_i \cdot Tcp_i)}} + {} \\ - \textcolor{blue}{\sum_{i=1}^{N} (Ps_i \cdot (\max_{i=1,2,\dots,N} (Tcp_i \cdot S_{i}) + {\min_{i=1,2,\dots,N} (Tcm_i))}} - \hspace{10 mm} - \end{multline} - \underline{where}:\\ - \textcolor{blue}{N} : is the number of nodes. -\end{frame} + %\begin{frame}{The energy consumption model} + % The overall energy consumption of a message passing synchronous application executed over + % a heterogeneous platform can be computed as follows: + % \begin{multline} + % \label{eq:energy} + % \textcolor{red}{E} = \textcolor{blue}{\sum_{i=1}^{N} {(S_i^{-2} \cdot Pd_i \cdot Tcp_i)}} + {} \\ + % \textcolor{blue}{\sum_{i=1}^{N} (Ps_i \cdot (\max_{i=1,2,\dots,N} (Tcp_i \cdot S_{i}) + {\min_{i=1,2,\dots,N} (Tcm_i))}} + % \hspace{10 mm} + % \end{multline} + % \underline{where}:\\ + % \textcolor{blue}{N} : is the number of nodes. +%\end{frame} %%%%%%%%%%%%%%%%%%%% %% SLIDE 26 %% %%%%%%%%%%%%%%%%%%%% - \begin{frame}{The energy model example for heter. cluster} - \vspace{-0.5cm} + \begin{frame}{The energy model for heterogeneous cluster} + \vspace{-0.77cm} \begin{figure} - \animategraphics[autopause,controls,scale=0.28,buttonsize=0.2cm]{10}{heter-model/a-}{0}{272} + \animategraphics[autopause,controls,scale=0.3,buttonsize=0.2cm]{10}{heter-model/a-}{0}{350} + %\includegraphics[width=0.6\textwidth]{heter-model/a-272} \end{figure} \end{frame} @@ -594,47 +644,48 @@ %%%%%%%%%%%%%%%%%%%% %% SLIDE 27 %% %%%%%%%%%%%%%%%%%%%% -\begin{frame}{The trade-off between energy and performance} - \vspace{-7 mm} - \begin{figure} - \centering{ \includegraphics[width=.4\textwidth]{c2/heter}} - \end{figure} - \vspace{-7 mm} - \textcolor{red}{\underline{Step1}}: computing the normalized energy \textcolor{blue}{$E_{norm} = \frac{E_{reduced}} - {E_{Max}}$}. \\ - \textcolor{red}{\underline{Step2}}: computing the normalized performance \textcolor{blue}{$P_{norm} = \frac{T_{Max}}{T_{new}}$}. +%\begin{frame}{The trade-off between energy and performance} + % \vspace{-7 mm} + %\begin{figure} + % \centering{ \includegraphics[width=.4\textwidth]{c2/heter}} + % \end{figure} + % \vspace{-7 mm} + % \textcolor{red}{\underline{Step1}}: computing the normalized energy \textcolor{blue}%{$E_{norm} = \frac{E_{reduced}} + %{E_{Max}}$}. \\ + % \textcolor{red}{\underline{Step2}}: computing the normalized performance \textcolor{blue}{$P_{norm} = \frac{T_{Max}}{T_{new}}$}. - \begin{block}{\small The tradeoff model} - \begin{equation} - \label{eq:max} - \textcolor{red}{MaxDist} = - \mathop {\max_{i=1,\dots F}}_{j=1,\dots,N} - (\overbrace{P_{norm}(S_{ij})}^{\text{\textcolor{blue}{Maximize}}} - - \overbrace{E_{norm}(S_{ij})}^{\text{\textcolor{blue}{Minimize}}} ) - \end{equation} - \end{block} -\end{frame} + % \begin{block}{\small The tradeoff model} + % \begin{equation} + % \label{eq:max} + % \textcolor{red}{MaxDist} = + % \mathop {\max_{i=1,\dots F}}_{j=1,\dots,N} + % (\overbrace{P_{norm}(S_{ij})}^{\text{\textcolor{blue}{Maximize}}} - + % \overbrace{E_{norm}(S_{ij})}^{\text{\textcolor{blue}{Minimize}}} ) + %\end{equation} + % \end{block} +%\end{frame} %%%%%%%%%%%%%%%%%%%% %% SLIDE 28 %% %%%%%%%%%%%%%%%%%%%% - \begin{frame}{The scaling algorithm for heter. cluster} + %\begin{frame}{The scaling algorithm for heter. cluster} - \centering - \includegraphics[width=.52\textwidth]{algo-heter} - \end{frame} + %\centering + %\includegraphics[width=.52\textwidth]{algo-heter} + %\end{frame} %%%%%%%%%%%%%%%%%%%% %% SLIDE 29 %% %%%%%%%%%%%%%%%%%%%% - \begin{frame}{The scaling algorithm example} - \vspace{-0.5cm} + \begin{frame}{The scaling algorithm for heter. cluster} + \vspace{-0.77cm} \centering \begin{figure} - \animategraphics[autopause,controls,scale=0.28,buttonsize=0.2cm]{10}{dvfs-heter/a-}{0}{650} + \animategraphics[autopause,controls,scale=0.3,buttonsize=0.2cm]{10}{dvfs-heter/a-}{0}{836} + % \includegraphics[width=0.6\textwidth]{dvfs-heter/a-650} \end{figure} \end{frame} @@ -644,134 +695,112 @@ %%%%%%%%%%%%%%%%%%%% %% SLIDE 30 %% %%%%%%%%%%%%%%%%%%%% -\begin{frame}{Experiments over heterogeneous cluster } - \begin{itemize} - \small - \item The experiments executed on the simulator SimGrid/SMPI v3.10.\medskip - \item The scaling algorithm was applied to the NAS parallel benchmarks class C.\medskip - \item Four types of processors with different computing powers were used.\medskip - \item We ran the benchmarks on different number of nodes ranging from 4 to 144 nodes.\medskip - \item The total power consumption of the chosen CPUs is composed of $80\%$ for dynamic power and $20\%$ for static power. - \medskip +%\begin{frame}{Experiments over a heterogeneous cluster } + % \begin{itemize} + % \small + % \item The experiments were executed on the simulator SimGrid/SMPI v3.10.\medskip + % \item The scaling algorithm was applied to the NAS parallel benchmarks class C.\medskip + % \item Four types of processors with different computing powers were used.\medskip + % \item The benchmarks were executed with different number of nodes ranging from 4 to 144 nodes.\medskip + % \item It was assumed that the total power consumption of the CPU consist of 80\% dynamic power and 20\% static power. + % \medskip - \end{itemize} + %\end{itemize} -\end{frame} +%\end{frame} %%%%%%%%%%%%%%%%%%%% %% SLIDE 31 %% %%%%%%%%%%%%%%%%%%%% -\begin{frame}{The experimental results} - \vspace{-5 mm} - \begin{figure}[!t] - \centering - \includegraphics[width=0.8\textwidth]{c2/energy_saving.pdf} +%\begin{frame}{The simulation results} + % \vspace{-5 mm} + % \begin{figure}[!t] + %\centering + %\includegraphics[width=0.8\textwidth]{c2/energy_saving.pdf} - \textcolor{blue}{On average, it saves the energy consumption by \textcolor{red}{29\%} - of NAS benchmarks class C executed over 8 nodes} + % \textcolor{blue}{On average, it reduces the energy consumption by \textcolor{red}{29\%} + %for the class C of the NAS Benchmarks executed over 8 nodes} - \end{figure} -\end{frame} + % \end{figure} +%\end{frame} %%%%%%%%%%%%%%%%%%%% %% SLIDE 32 %% %%%%%%%%%%%%%%%%%%%% -\begin{frame}{The experimental results} - \vspace{-5 mm} - \begin{figure}[!t] - \centering +%\begin{frame}{The simulation results} + % \vspace{-5 mm} + % \begin{figure}[!t] + % \centering - \includegraphics[width=.8\textwidth]{c2/perf_degra.pdf} + % \includegraphics[width=.8\textwidth]{c2/perf_degra.pdf} - \textcolor{blue}{On average, it degrades the performance by \textcolor{red}{3.8\%} - of NAS benchmarks class C executed over 8 nodes} - \end{figure} -\end{frame} + % \textcolor{blue}{On average, it degrades by \textcolor{red}{3.8\%} the performance + % of NAS Benchmarks class C executed over 8 nodes} + % \end{figure} +%\end{frame} -%%%%%%%%%%%%%%%%%%%% -%% SLIDE 33 %% -%%%%%%%%%%%%%%%%%%%% -\begin{frame}{The results of the three powers scenarios} - \vspace{-5 mm} - \begin{figure}[!t] - \centering - \includegraphics[width=.55\textwidth]{c2/three_power.pdf} - \vspace{10 mm} - \includegraphics[width=.55\textwidth]{c2/three_scenarios.pdf} - \end{figure} -\end{frame} -%%%%%%%%%%%%%%%%%%%% -%% SLIDE 34 %% -%%%%%%%%%%%%%%%%%%%% -\begin{frame}{The comparing our method} - The proposed method (MaxDist) was compared to the EDP algorithm that minimizes the \textcolor{blue}{ - $\mathit{energy}\times \mathit{delay}$} value. - \vspace{-5 mm} - \begin{figure}[!t] - \centering - \includegraphics[width=.55\textwidth]{c2/avg_compare.pdf} - - \includegraphics[width=.55\textwidth]{c2/compare_with_EDP.pdf} - \end{figure} -\end{frame} - - %%%%%%%%%%%%%%%%%%%% %% SLIDE 35 %% %%%%%%%%%%%%%%%%%%%% -\begin{frame}{Energy optimization of grid platform} - \begin{figure}[!t] - \centering - \includegraphics[width=.6\textwidth]{c2/grid5000.pdf} +%\begin{frame}{Energy optimization of grid platform} + % \begin{figure}[!t] + % \centering + % \includegraphics[width=.6\textwidth]{c2/grid5000.pdf} - \small 10 sites distributed over France and Luxembourg - \end{figure} -\end{frame} + % \small 10 sites distributed over France and Luxembourg + %\end{figure} +%\end{frame} %%%%%%%%%%%%%%%%%%%% %% SLIDE 36 %% %%%%%%%%%%%%%%%%%%%% - \begin{frame}{Performance, Energy and trade-off models} \small - \begin{block}{\small The performance model of grid} - \begin{equation} - \label{eq:perf} - \Tnew = \mathop{\max_{i=1,\dots N}}_{j=1,\dots,M_i}({\TcpOld[ij]} \cdot S_{ij}) - +\mathop{\min_{j=1,\dots,M_h}} (\Tcm[hj]) -\end{equation} - \end{block} +%\begin{frame}{The grid architecture} +%\begin{center} +%\includegraphics[width=.8\textwidth]{c2/init_freq.pdf} +%\end{center} + + %\begin{frame}{Performance, Energy and trade-off models} \small + %\begin{block}{\small The performance model of grid} + % \begin{equation} + %\label{eq:perf} + %\Tnew = \mathop{\max_{i=1,\dots N}}_{j=1,\dots,M_i}({\TcpOld[ij]} \cdot S_{ij}) + % +\mathop{\min_{j=1,\dots,M_h}} (\Tcm[hj]) +%\end{equation} + %\end{block} - \begin{block}{\small The energy model of grid}\small - \begin{equation} - \label{eq:energy} - E = \sum_{i=1}^{N} \sum_{i=1}^{M_i} {(S_{ij}^{-2} \cdot \Pd[ij] \cdot \Tcp[ij])} + - \sum_{i=1}^{N} \sum_{j=1}^{M_i} (\Ps[ij] \cdot \Tnew) -\end{equation} - \end{block} - -\begin{block}{\small The trade-off model of grid} -\small - \begin{equation} - \label{eq:max} - \MaxDist = - \mathop{ \mathop{\max_{i=1,\dots N}}_{j=1,\dots,M_i}}_{k=1,\dots,F_j} - (\overbrace{\Pnorm(S_{ijk})}^{\text{Maximize}} - - \overbrace{\Enorm(S_{ijk})}^{\text{Minimize}} ) -\end{equation} - \end{block} + %\begin{block}{\small The energy model of grid}\small + % \begin{equation} + %\label{eq:energy} + %E = \sum_{i=1}^{N} \sum_{i=1}^{M_i} {(S_{ij}^{-2} \cdot \Pd[ij] \cdot \Tcp[ij])} + +% \sum_{i=1}^{N} \sum_{j=1}^{M_i} (\Ps[ij] \cdot \Tnew) +%\end{equation} + % \end{block} + +%\begin{block}{\small The trade-off model of grid} +%\small + %\begin{equation} + %\label{eq:max} + %\MaxDist = + %\mathop{ \mathop{\max_{i=1,\dots N}}_{j=1,\dots,M_i}}_{k=1,\dots,F_j} + % (\overbrace{\Pnorm(S_{ijk})}^{\text{Maximize}} - + % \overbrace{\Enorm(S_{ijk})}^{\text{Minimize}} ) +%\end{equation} + % \end{block} - \end{frame} + + %\end{frame} @@ -779,18 +808,21 @@ %% SLIDE 37 %% %%%%%%%%%%%%%%%%%%%% \begin{frame}{Experiments over Grid'5000} - \centering - + + \textcolor{blue}{The experiments were conducted using three + clusters distributed over one or two sites.} + \vspace{-7 mm} + \begin{center} \includegraphics[width=.5\textwidth]{c2/grid5000-2.pdf} - - \vspace{-3 mm} - \textcolor{blue}{The experiments executed over one site and two sites scenarios} - - \vspace{1mm} - + \end{center} + \vspace{-10 mm} + \textcolor{blue}{Grid'5000 power measurement tools were used.} + \vspace{-9 mm} + \begin{center} \includegraphics[width=.5\textwidth]{c2/power_consumption.pdf} + \end{center} - \textcolor{blue}{We used Grid'5000 power measurement tools} + \end{frame} @@ -802,8 +834,9 @@ \begin{frame}{Experiments over Grid'5000} \begin{minipage}{0.4\textwidth} - \textcolor{blue}{Execution the NAS class D on 16 nodes saves the energy by - \textcolor{red}{30\%}} + %\textcolor{blue}{Execution the NAS class D on 16 nodes saves the energy by + %\textcolor{red}{30\%}} + \small \textcolor{blue}{The average energy saving = \textcolor{red}{30\%}} \end{minipage} \begin{minipage}{0.55\textwidth} \begin{figure}[h!] @@ -812,8 +845,9 @@ \end{minipage} \begin{minipage}{0.4\textwidth} - \textcolor{blue}{Execution the NAS class D on 16 nodes degrades the - performance by \textcolor{red}{3.2\%}} + %\textcolor{blue}{Execution the NAS class D on 16 nodes degrades the + %performance by \textcolor{red}{3.2\%}} + \small \textcolor{blue}{The average performance degradation = \textcolor{red}{3.2\%}} \end{minipage} \begin{minipage}{0.55\textwidth} \begin{figure}[h!] @@ -824,11 +858,32 @@ +%%%%%%%%%%%%%%%%%%%% +%% SLIDE 33 %% +%%%%%%%%%%%%%%%%%%%% +\begin{frame}{The results of the three power scenarios} + \vspace{-5 mm} + \begin{figure}[!t] + \centering + \includegraphics[width=.45\textwidth]{c2/eng_pow.eps} + \hspace{0.3cm} + \includegraphics[width=.45\textwidth]{c2/per_pow.eps} + \vspace{4 mm} + \includegraphics[width=.7\textwidth]{c2/three_scenarios.pdf} + \end{figure} +\end{frame} + + + + + + + %%%%%%%%%%%%%%%%%%%% %% SLIDE 39 %% %%%%%%%%%%%%%%%%%%%% -\begin{frame}{Experiments over Grid'5000} - \textcolor{blue}{One core and Multi-cores per node results:} +\begin{frame}{One core and Multi-cores per node results} + %\textcolor{blue}{One core and Multi-cores per node results:} \begin{figure}[h!] \includegraphics[width=.48\textwidth]{c2/eng_s_mc.eps} @@ -836,11 +891,26 @@ \includegraphics[width=.48\textwidth]{c2/per_d_mc.eps} \end{figure} - \centering \small \textcolor{blue}{Using multi-core per node scenario decreases the computations to communications ratio}. + \centering \small \textcolor{blue}{Using multi-cores per node scenario decreases the computations to communications ratio}. \end{frame} - +%%%%%%%%%%%%%%%%%%%% +%% SLIDE 34 %% +%%%%%%%%%%%%%%%%%%%% +\begin{frame}{Comparing the objective function to EDP} + + EDP is the product between the energy consumption and the delay \tiny\textsuperscript{3}. + \vspace{-5 mm} + \begin{figure}[!t] + \centering + \includegraphics[width=.6\textwidth]{c2/edp_dist.eps} + + + \end{figure} + + \tiny \textsuperscript{3} Spiliopoulos et al, Green governors: A framework for continuously adaptive dvfs, in International Green Computing Conference and Workshops (IGCC), 2011. +\end{frame} %\begin{frame}{Summary} %\begin{itemize} % \small @@ -864,12 +934,10 @@ %%%%%%%%%%%%%%%%%%%% %% SLIDE 40 %% %%%%%%%%%%%%%%%%%%%% -\begin{frame}{Continuation} -\subsection{\small {3.3 Energy optimization of asynchronous applications}} +\begin{frame}{The third contribution} +\section{\small {Energy optimization of asynchronous applications}} \begin{center} -\bf \textcolor{black}{Third contribution} \\ -\vspace{1cm} -\bf \Large \textcolor{blue}{Energy optimization of asynchronous applications} +\bf \Large \textcolor{blue}{Energy optimization of asynchronous iterative message passing applications} \end{center} \end{frame} @@ -879,10 +947,11 @@ %% SLIDE 41 %% %%%%%%%%%%%%%%%%%%%% \begin{frame}{Problem definition}\vspace{0.8 mm} -\textcolor{blue}{Execution the parallel iterative application with synchronous communications } +\textcolor{blue}{The execution of a synchronous parallel iterative application over a grid } \vspace{-8 mm} \begin{figure} - \animategraphics[autopause,controls,scale=0.25,buttonsize=0.2cm]{10}{syn/a-}{0}{503} + \animategraphics[autopause,controls,scale=0.26,buttonsize=0.2cm]{10}{syn/a-}{0}{647} + %\includegraphics[width=0.6\textwidth]{syn/a-503} \end{figure} \end{frame} @@ -892,10 +961,11 @@ %% SLIDE 42 %% %%%%%%%%%%%%%%%%%%%% \begin{frame}{Problem definition}\vspace{0.8 mm} -\textcolor{blue}{Execution the parallel iterative application with synchronous communications } +\textcolor{blue}{The execution of an asynchronous parallel iterative application over a grid } \vspace{-8 mm} \begin{figure} - \animategraphics[autopause,controls,scale=0.25,buttonsize=0.2cm]{10}{asyn/a-}{0}{440} + \animategraphics[autopause,controls,scale=0.26,buttonsize=0.2cm]{10}{asyn/a-}{0}{556} + %\includegraphics[width=0.6\textwidth]{asyn/a-440} \end{figure} \end{frame} @@ -908,7 +978,8 @@ \textcolor{blue}{Using asynchronous communications with DVFS } \vspace{-8 mm} \begin{figure} - \animategraphics[autopause,controls,scale=0.25,buttonsize=0.2cm]{10}{asyn+dvfs/a-}{0}{314} + \animategraphics[autopause,controls,scale=0.26,buttonsize=0.2cm]{10}{asyn+dvfs/a-}{0}{344} + %\includegraphics[width=0.6\textwidth]{asyn+dvfs/a-314} \end{figure} \end{frame} @@ -918,77 +989,93 @@ %%%%%%%%%%%%%%%%%%%% %% SLIDE 44 %% %%%%%%%%%%%%%%%%%%%% -\begin{frame}{The performance models} +%\begin{frame}{The performance models} -\begin{block}{\small The performance model of Asynch. Applications}\small -\begin{equation} - \label{eq:asyn_time} - \Tnew = \frac{\sum_{i=1}^{N} \sum_{j=1}^{M_i}({\TcpOld[ij]} \cdot S_{ij})} {N \cdot M_i } -\end{equation} -\end{block} +%\begin{block}{\small The performance model of Asynch. Applications}\small +%\begin{equation} + %\label{eq:asyn_time} + %\Tnew = \frac{\sum_{i=1}^{N} \sum_{j=1}^{M_i}({\TcpOld[ij]} \cdot S_{ij})} {N \cdot M_i } +%\end{equation} +%\end{block} -\begin{block}{\small The performance model of Hybrid Applications}\small -\begin{equation} - \label{eq:asyn_perf} - \Tnew = \frac{\sum_{i=1}^{N} (\max_{j=1,\dots, M_i} ({\TcpOld[ij]} \cdot S_{ij}) + - \min_{j=1,\dots,M_i} ({\Ltcm[ij]}))}{N} -\end{equation} -\end{block} +%\begin{block}{\small The performance model of Hybrid Applications}\small +%\begin{equation} + %\label{eq:asyn_perf} + %\Tnew = \frac{\sum_{i=1}^{N} (\max_{j=1,\dots, M_i} ({\TcpOld[ij]} \cdot S_{ij}) + + %\min_{j=1,\dots,M_i} ({\Ltcm[ij]}))}{N} +%\end{equation} +%\end{block} -\end{frame} +%\end{frame} %%%%%%%%%%%%%%%%%%%% %% SLIDE 45 %% %%%%%%%%%%%%%%%%%%%% -\begin{frame}{The energy consumption models} +%\begin{frame}{The energy consumption models} -\begin{block}{\small The energy model of Asynch. Applications}\small -\begin{equation} - \label{eq:asyn_energy1} - E = \sum_{i=1}^{N} \sum_{j=1}^{M_i} {(S_{ij}^{-2} \cdot \Tcp[ij] \cdot (\Pd[ij]+\Ps[ij]) )} -\end{equation} -\end{block} +%\begin{block}{\small The energy model of Asynch. Applications}\small +%\begin{equation} + %\label{eq:asyn_energy1} +% E = \sum_{i=1}^{N} \sum_{j=1}^{M_i} {(S_{ij}^{-2} \cdot \Tcp[ij] \cdot (\Pd[ij]+\Ps[ij]) )} +%\end{equation} +%\end{block} -\begin{block}{\small The energy model of Hybrid Applications}\small -\begin{multline} - \label{eq:asyn_energy} - E = \sum_{i=1}^{N} \sum_{j=1}^{M_i} {(S_{ij}^{-2} \cdot \Pd[ij] \cdot \Tcp[ij])} + \sum_{i=1}^{N} \sum_{j=1}^{M_i} (\Ps[ij] \cdot \\ - ( \mathop{\max_{j=1,\dots,M_i}} ({\Tcp[ij]} \cdot S_{ij}) + \mathop{\min_{j=1,\dots,M_i}} ({\Ltcm[ij]}))) -\end{multline} -\end{block} -\end{frame} +%\begin{block}{\small The energy model of Hybrid Applications}\small +%\begin{multline} + %\label{eq:asyn_energy} + %E = \sum_{i=1}^{N} \sum_{j=1}^{M_i} {(S_{ij}^{-2} \cdot \Pd[ij] \cdot \Tcp[ij])} + \sum_{i=1}^{N} \sum_{j=1}^{M_i} (\Ps[ij] \cdot \\ +% ( \mathop{\max_{j=1,\dots,M_i}} ({\Tcp[ij]} \cdot S_{ij}) + \mathop{\min_{j=1,\dots,M_i}} ({\Ltcm[ij]}))) +%\end{multline} +%\end{block} +%\end{frame} %%%%%%%%%%%%%%%%%%%% -%% SLIDE 46 %% +%% SLIDE 44 %% %%%%%%%%%%%%%%%%%%%% -\begin{frame}{The scaling algorithm for Asynch. applications} -\vspace{-0.1 mm} +\begin{frame}{The performance and the energy models } + \centering -\includegraphics[width=0.55\textwidth]{algo-hybrid.pdf} +\includegraphics[width=0.9\textwidth]{syn-vs-asyn.pdf} \end{frame} + + +%%%%%%%%%%%%%%%%%%%% +%% SLIDE 46 %% +%%%%%%%%%%%%%%%%%%%% +%\begin{frame}{The scaling algorithm for Asynch. applications} +%\vspace{-0.1 mm} +%\centering +%\includegraphics[width=0.55\textwidth]{algo-hybrid.pdf} +%\end{frame} + + + %%%%%%%%%%%%%%%%%%%% %% SLIDE 47 %% %%%%%%%%%%%%%%%%%%%% -\begin{frame}{The experimental results} +\begin{frame}{The experiments} \vspace{-5 mm} \begin{figure}[!t] - \centering + \begin{itemize} + \small + \item The architecture of the grid: + \end{itemize} \includegraphics[width=0.5\textwidth]{c3/hybrid-model.pdf} \end{figure} \begin{itemize} \small - \item Execution the iterative multi-splitting method over simulated Grid. - \item Execution the iterative multi-splitting method over Grid'5000 test-bed. + \item Applying the proposed algorithm to the asynchronous iterative message passing multi-splitting method. + \item Evaluating the application over the simulator and Grid'5000. \end{itemize} \end{frame} @@ -997,27 +1084,27 @@ %%%%%%%%%%%%%%%%%%%% %% SLIDE 48 %% %%%%%%%%%%%%%%%%%%%% -\begin{frame}{The simulation results} -\centering \small \textcolor{blue}{The best scenario in term of energy and performance is the Async. MS with Sync. DVFS} +%\begin{frame}{The simulation results} +%\centering \small \textcolor{blue}{The best scenario in terms of energy and performance is %the Async. MS with Sync. DVFS} -\centering - \includegraphics[scale=0.46]{c3/energy_saving.eps} +%\centering + % \includegraphics[scale=0.42]{c3/energy_saving.eps} - \centering The average of energy saving = \textcolor{red}{22\%} -\end{frame} + %\centering The average energy saving = \textcolor{red}{22\%} +%\end{frame} %%%%%%%%%%%%%%%%%%%% %% SLIDE 49 %% %%%%%%%%%%%%%%%%%%%% -\begin{frame}{The simulation results} -\centering +%\begin{frame}{The simulation results} +%\centering - \includegraphics[scale=0.46]{c3/perf_degra.eps} + % \includegraphics[scale=0.42]{c3/perf_degra.eps} - \centering The average of speed-up = \textcolor{red}{5.72\%} -\end{frame} +%\centering The average speed-up = \textcolor{red}{5.72\%} +%\end{frame} @@ -1025,7 +1112,7 @@ %% SLIDE 50 %% %%%%%%%%%%%%%%%%%%%% \begin{frame}{The Grid'5000 results} - \vspace{-20 mm} + \vspace{-10 mm} \begin{figure}[!t] \centering \hspace{-8 mm} @@ -1033,8 +1120,11 @@ \includegraphics[width=0.53\textwidth]{c3/perf-deg-compare.eps} \end{figure} \vspace{-5 mm} - \centering - The energy saving = \textcolor{red}{26.93\%}, speeds up = \textcolor{red}{21.48\%} + \centering \footnotesize + + %\small \textcolor{blue}{The best scenario in terms of energy and performance is the Async. MS with Sync. DVFS} + +The average energy saving = \textcolor{red}{26.93\%}, the average speed-up = \textcolor{red}{21.48\%} \end{frame} @@ -1055,26 +1145,24 @@ %% SLIDE 52 %% %%%%%%%%%%%%%%%%%%%% \begin{frame}{Conclusions} -\section{Conclusions} +\section{Conclusions and Perspectives} \begin{itemize} -\small \barrow We have proposed \textcolor{blue}{a new energy consumption and performance} models for - synchronous and asynchronous parallel applications with iterations. - +\small \barrow Three \textcolor{blue}{ new energy consumption and performance} models were proposed for synchronous or asynchronous parallel applications with iterations running over +\textcolor{blue}{homogeneous and heterogeneous clusters or grids}. -\small \barrow The parallel applications with iterations were executed over different parallel architectures such as: \textcolor{blue}{homogeneous cluster, heterogeneous cluster and -grid}. -\small \barrow We have proposed \textcolor{blue}{new objective function} to optimize both the energy consumption and the performance. + +\small \barrow \textcolor{blue}{A new objective function} to optimize both the energy consumption and the performance was proposed. \small \barrow \textcolor{blue}{New online frequency selecting algorithms} for clusters and grids were developed. \small \barrow The proposed algorithms were applied to the \textcolor{blue}{NAS parallel benchmarks} and \textcolor{blue}{the Multi-splitting} method. -\small \barrow The proposed algorithms were evaluated over the \textcolor{blue}{SimGrid simulator and over Grid'5000 testbed}. +\small \barrow The proposed algorithms were evaluated over the \textcolor{blue}{SimGrid simulator} and over the \textcolor{blue}{Grid'5000 testbed}. -\small \barrow All the proposed methods were compared with either \textcolor{blue}{Rauber and Rünger method} or \textcolor{blue}{EDP objective function}. +\small \barrow All the proposed methods were compared to either \textcolor{blue}{Rauber and Rünger's method} or to the \textcolor{blue}{EDP objective function}. \end{itemize} @@ -1085,7 +1173,7 @@ Multi-splitting} method. %%%%%%%%%%%%%%%%%%%% %% SLIDE 53 %% %%%%%%%%%%%%%%%%%%%% -\begin{frame}{Publication} +\begin{frame}{Publications} \begin{block}{\small Journal Articles }\scriptsize \begin{enumerate}[$\lbrack$1$\rbrack$] @@ -1094,7 +1182,7 @@ Multi-splitting} method. Science}, 2016. \item Ahmed Fanfakh, Jean-Claude Charr, Raphaël Couturier, Arnaud Giersch. Energy Consumption Reduction for - Asynchronous Message Passing Applications. \textit{Journal of Supercomputing}, 2016, (Submitted) + Asynchronous Message Passing Applications. \textit{Journal of Supercomputing}, 2016, (Accepted with minor revisions) \end{enumerate} \end{block} @@ -1126,11 +1214,10 @@ Multi-splitting} method. %% SLIDE 54 %% %%%%%%%%%%%%%%%%%%%% \begin{frame}{Perspectives} -\section{Perspectives} \begin{itemize} -\small \barrow We will adapt the proposed algorithms to take into consideration the +\small \barrow The proposed algorithms should take into consideration the \textcolor{blue}{variability between some iterations}. \small \barrow The proposed algorithms should be applied to \textcolor{blue}{other message passing methods with iterations} in order to see how they adapt to the characteristics of these methods. @@ -1138,6 +1225,9 @@ Multi-splitting} method. \small \barrow The proposed algorithms for heterogeneous platforms should be applied to heterogeneous platforms composed of \textcolor{blue}{CPUs and GPUs}. \small \barrow Comparing the results returned by the energy models to the values given by \textcolor{blue}{real instruments that measure the energy consumptions} of CPUs during the execution time. +\small \barrow Considering the power consumed by the other devices in the node such as +\textcolor{blue}{the memory and the hard drive} in the energy consumption model. + \end{itemize} \end{frame} @@ -1147,7 +1237,7 @@ Multi-splitting} method. %%%%%%%%%%%%%%%%%%%% \begin{frame}{Fin} \vspace{-10 mm} - \centering \Large \textcolor{blue}{Thanks for Your Listening} + \centering \Large \textcolor{blue}{Thank you for your attention} \vspace{2cm} \centering \textcolor{blue}{ {\Large Questions?}}