2 \usepackage{beamerthemefemto}
3 \usepackage[T1]{fontenc}
4 \usepackage{amsfonts,amsmath,amssymb,stmaryrd}
5 \usepackage[frenchb]{babel}
7 \usepackage[utf8]{inputenc}
8 %\usepackage[section]{algorithm}
9 %\usepackage{algorithmic}
12 \usepackage{spverbatim}
22 \usepackage{algorithmic}
23 %\usepackage[ruled,english,boxed,linesnumbered]{algorithm2e}
24 %\usepackage[english]{algorithme}
25 \usepackage{subfigure}
32 \def\setgrouptext#1{\gdef\grouptext{#1}}
33 \newenvironment{groupeditems}{\begin{displaymath}\left.\vbox\bgroup\setgrouptext}{%
34 \egroup\right\rbrace\hbox{\grouptext}\end{displaymath}}
36 \newcommand*\rot{\rotatebox{90}}
37 \newcommand*\OK{\ding{51}}
39 \newcommand{\mcrot}[4]{\multicolumn{#1}{#2}{\rlap{\rotatebox{#3}{#4}~}}}
41 \newcommand*{\twoelementtable}[3][l]%
43 \renewcommand{\arraystretch}{0.8}%
44 \begin{tabular}[t]{@{}#1@{}}%
51 \DeclareGraphicsExtensions{.jpg, .png , .pdf, .bmp, .pdftex}
53 \setbeamertemplate{section in toc}[sections numbered]
54 \setbeamertemplate{subsection in toc}[subsections numbered]
59 \frametitle{Presentation Outline}
60 \tableofcontents[currentsection]
65 \title{\textbf{Distributed Coverage Optimization Techniques for Improving Lifetime of Wireless Sensor Networks} \\\vspace{0.1cm}\hspace{2cm}\textbf{\textcolor{cyan}{\small PhD Dissertation Defense}}}
66 \author{\textbf{\textcolor{green}{Ali Kadhum IDREES}} \\\vspace{0.5cm} \small Under Supervision: \\\textcolor{cyan}{\small Raphaël COUTURIER, Karine DESCHINKEL \& Michel SALOMON} \\\vspace{0.2cm} \textcolor{blue}{ University of Franche-Comté - FEMTO-ST - DISC Dept. - AND Team} \\\vspace{0.2cm}~~~~~~~~~~~~~~~~\textbf{\textcolor{green}{1 October 2015 }}}
68 %\institute[FEMTO-ST, DISC]{\textit{FEMTO-ST - DISC Departement - AND Team}}
75 % ____ _____ ____ _ _ _____
76 % | _ \| ____| __ )| | | |_ _|
77 % | | | | _| | _ \| | | | | |
78 % | |_| | |___| |_) | |_| | | |
79 % |____/|_____|____/ \___/ |_|
87 \setbeamertemplate{background}{\titrefemto}
95 \setbeamertemplate{background}{\pagefemto}
101 \begin{frame} {Problem Definition, Solution, and Objectives}
104 \includegraphics[width=0.495\textwidth]{Figures/6}
106 % \includegraphics[width=0.475\textwidth]{Figures/8}
108 \includegraphics[width=0.495\textwidth]{Figures/10}
110 % \includegraphics[width=0.475\textwidth]{Figures/13}
113 \begin{block}{\textcolor{white}{ MAIN QUESTION?}}
114 \textcolor{black}{How to minimize the energy consumption and extend the network lifetime during covering a certain area?}
122 \begin{frame}{Problem Definition, Solution, and Objectives}
124 \begin{block}{\textcolor{white}{OUR SOLUTION}}
125 \bf \textcolor{black}{The area of interest is divided into subregions using a divide-and conquer method and then combine two efficient techniques:}
128 \item \bf \textcolor{magenta}{Leader Election for each subregion.}
129 % \item Activity Scheduling based optimization is planned for each subregion.
134 \includegraphics[width=0.475\textwidth]{Figures/div}
136 \includegraphics[width=0.475\textwidth]{Figures/div2}
144 \begin{frame}{Problem Definition, Solution, and Objectives}
146 \begin{block}{\textcolor{white}{OUR SOLUTION}}
148 %\item Leader Election for each subregion.
149 \item \bf \textcolor{magenta}{Activity Scheduling based optimization is planned for each subregion.}
154 \includegraphics[width=0.775\textwidth]{Figures/act}
163 \begin{frame}{Problem Definition, Solution, and Objectives}
165 \begin{block}{\bf \textcolor{white}{Dissertation Objectives}}
166 \bf \textcolor{black}{Develop energy-efficient distributed optimization protocols that should be able to:}
168 \item \bf \textcolor{blue}{Schedule node activities by optimize both coverage and lifetime.}
169 \item \bf \textcolor{blue}{Combine two efficient techniques: leader election and sensor activity scheduling.}
170 \item \bf \textcolor{blue}{Perform a distributed optimization process.}
183 \frametitle{Presentation Outline}
185 \tableofcontents[section,subsection]
193 \section{\small {State of the Art}}
199 \begin{frame}{Wireless Sensor Networks (WSNs)}
203 \column{.58\textwidth}
206 \includegraphics[height = 3cm]{Figures/WSNT.jpg}
214 \item Electronic Low-cost tiny device.
215 \item Sense, process and transmit data.
216 \item Limited energy, memory and processing capabilities.
220 \column{.52\textwidth}
223 \includegraphics[height = 4.5cm]{Figures/WSN.jpg}
227 \includegraphics[height = 2cm]{Figures/sn.jpg}
231 % \begin{femtoBlock} {}% {SOME APPLICATIONS OF WSNs \\}
233 % \includegraphics[height =1 cm]{1.png}
234 % \includegraphics[height =1cm]{2.png}\\
235 % \includegraphics[height =1cm]{5.jpg}
236 % \includegraphics[height = 1cm]{traffic.jpg}
237 % \includegraphics[height = 1cm]{3.png}
252 \begin{frame}{Types of Wireless Sensor Networks}
257 %\column{.52\textwidth}
259 % \item Terrestrial WSNs.
260 % \item Underground WSNs.
261 % \item Underwater WSNs.
262 % \item Multimedia WSNs.
267 % \column{.58\textwidth}
269 \includegraphics[height = 7cm]{Figures/typesWSN.pdf}
279 \begin{frame}{Applications}
283 \includegraphics[height = 7cm]{Figures/WSNAP.pdf}
291 \begin{frame}{Energy-Efficient Mechanisms of a working WSN}
296 \includegraphics[height = 5cm]{Figures/WSN-M.pdf}
300 %\begin{frame}{Energy-Efficient Mechanisms of a working WSN}
304 % \includegraphics[height = 7cm]{Figures/WSN-S.pdf}
311 \begin{frame}{Network Lifetime}
313 \begin{block}{\textcolor{white} {Some Network Lifetime Definitions:}}
315 \begin{enumerate}[i)]
316 \item \textcolor{black} {Time spent until death of the first sensor (or cluster head).}
317 \item \textcolor{black} {Time spent until death of all wireless sensor nodes in WSN.}
318 \item \textcolor{black} {Time spent by WSN in covering each target by at least one sensor.}
319 \item \textcolor{black} {Time during which the area of interest is covered by at least k nodes.}
320 \item \textcolor{black} {Elapsed time until losing the connectivity or the coverage.}
324 \begin{block}{\textcolor{white} {Network lifetime In this dissertation:}}
325 \textcolor{blue} {Time elapsed until the coverage ratio becomes less than a predetermined threshold $\alpha$.}
334 \begin{frame}{Coverage in Wireless Sensor Networks}
336 \begin{block} <1-> {\textcolor{white} {Coverage Definition:}}
337 \textcolor{blue} {Coverage} reflects how well a sensor field is monitored efficiently using as less energy as possible.
342 \begin{block} <2-> {\textcolor{white} {Coverage Types:}}
344 \item \small \textcolor{blue} {Area coverage:} every point inside an area has to be monitored.
345 \item \textcolor{blue} {Target coverage:} only a finite number of discrete points called targets have to be monitored.
347 \item \textcolor{blue} {Barrier coverage:} detection of targets as they cross a barrier such as in intrusion detection and border surveillance applications.
353 \begin{block} <3-> {\textcolor{white} {Coverage type in this dissertation:}}
354 The work presented in this dissertation deals with \textcolor{red} {area coverage}.
362 \begin{frame}{Existing Works}
364 \begin{block} {\textcolor{white} {Coverage Approaches:}}
365 Most existing coverage approaches in literature classified into
366 \begin{enumerate}[A)]
367 \item Full centralized coverage algorithms.
369 \item Optimal or near optimal solution.
370 \item low computation power for the sensors (except for base station).
371 \item Higher energy consumption for communication in large WSN.
372 \item Not scalable for large WSNs.
374 \item Full distributed coverage algorithms.
376 \item Lower quality solution.
377 \item less energy consumption for communication in large WSN.
378 \item Reliable and scalable for large WSNs.
385 \begin{block} {\textcolor{white} {Coverage protocols in this dissertation:}}
386 The protocols presented in this dissertation combine between the two above approaches.
392 \begin{frame}{Existing Works: DESK algorithm}
395 \includegraphics[height = 3.0cm]{Figures/DESK.eps}
400 \item \small developed by Vu et al.
401 \item works in rounds.
402 \item requires only one-hop neighbor information.
403 \item each sensor decides its status (Active or Sleep) based on the perimeter coverage model.
404 \item whole area is K-covered if and only if the perimeters of all sensors
410 \tiny \bf \textcolor{blue}{DESK is chosen for comparison because it works into rounds fashion similar to our approaches, as well as DESK is a full distributed coverage approach.}
415 \begin{frame}{Existing Works: GAF algorithm}
420 \column{.58\textwidth}
423 \includegraphics[height = 2.7cm]{Figures/GAF1.eps}
428 \item developed by Xu et al.
429 \item uses geographic location information to divide the area of interest into a fixed square grids.
430 \item Within each grid, only one node staying awake to take the responsibility of sensing and communication.
431 \item the fixed grid is square with r units on a side.
432 \item $r\leq \dfrac{R_c}{\sqrt{5}}$
433 \item Distance(2,5) $\leq$ Communication Range ($R_c$).
436 \column{.52\textwidth}
442 \includegraphics[height = 3.3cm]{Figures/GAF2.eps}
447 \item \tiny enat: estimated node active time
448 \item enlt: estimated node lifetime
449 \item Td,Ta, Ts: discovery, active, and sleep timers
451 \item Ts = [enat/2, enat]
460 \tiny \bf \textcolor{blue}{GAF is chosen for comparison because it is famous and easy to implement, as well as many authors referred to it in many publications.}
469 \section{\small {Distributed Lifetime Coverage Optimization Protocol (DiLCO)}}
475 \begin{frame}{\small DiLCO Protocol $\blacktriangleright$ Assumptions and Network Model:}
479 \begin{femtoBlock} {} %{Assumptions and Network Model:}
483 \column{.50\textwidth}
487 \begin{enumerate} [$\divideontimes$]
488 \item Static Wireless Sensors.
489 \item Uniform deployment.
490 \item High density deployment.
491 \item Homogeneous in terms of:
493 \item Sensing, Communication, and Processing capabilities
495 \item Heterogeneous Energy.
496 \item Its $R_c\geq 2R_s$.
497 \item Multi-hop communication.
498 \item Known location by:
500 \item Embedded GPS or
501 \item Location Discovery Algorithm.
507 \column{.50\textwidth}
508 \begin{enumerate} [$\divideontimes$]
509 \item Using two kinds of packet:
512 \item ActiveSleep packet.
514 \item Five status for each node:
516 \item LISTENING, ACTIVE, SLEEP, COMPUTATION, and COMMUNICATION.
520 \begin{femtoBlock} { \small Primary point coverage model}
523 \includegraphics[height = 4.0cm]{Figures/fig21.pdf}
537 \begin{frame}{\small DiLCO Protocol $\blacktriangleright$ Main Idea}
539 \begin{femtoBlock} {}%{Main Idea:\\}
541 \includegraphics[height = 2.5cm]{Figures/OneSensingRound.jpg}
545 \item \textcolor{blue}{ \textbf{INFORMATION EXCHANGE:}}\\
546 Sensors exchanges through multi-hop communication, their:
548 \item Position coordinates,
549 \item current remaining energy,
550 \item sensor node ID, and
551 \item number of its one-hop live neighbors.
564 \begin{frame}{\small DiLCO Protocol $\blacktriangleright$ Main Idea}
566 \begin{femtoBlock} {}%{Main Idea:\\}
568 \begin{enumerate} [2.]
570 \item \textcolor{blue}{ \textbf{ LEADER ELECTION:}}\\
571 The selection criteria are, in order of importance:
573 \item larger number of neighbors,
574 \item larger remaining energy, and then in case of equality,
579 \begin{enumerate} [3.]
580 \item \textcolor{blue}{ \textbf{ DECISION:}} \\
581 Leader solves an integer program (see next slide) to:
583 \item Select which sensors will be activated in the sensing phase.
584 \item Send Active-Sleep packet to each sensor in the subregion.
587 \begin{enumerate} [4.]
588 \item \textcolor{blue}{ \textbf{ SENSING:}} \\
589 Based on Active-Sleep Packet Information:
591 \item Active sensors will execute their sensing task.
592 \item Sleep sensors will wait a time equal to the period of sensing to wakeup.
605 \begin{frame}{\small DiLCO Protocol $\blacktriangleright$ Coverage Problem Formulation}
607 \begin{equation*} \label{eq:ip2r}
610 \min \sum_{p \in P} (w_{\theta} \Theta_{p} + w_{U} U_{p})&\\
611 \textrm{subject to :}&\\
612 \sum_{j \in J} \alpha_{jp} X_{j} - \Theta_{p}+ U_{p} =1, &\forall p \in P\\
614 %\sum_{t \in T} X_{j,t} \leq \frac{RE_j}{e_t} &\forall j \in J \\
616 \Theta_{p}\in \mathbb{N}, &\forall p \in P\\
617 U_{p} \in \{0,1\}, &\forall p \in P \\
618 X_{j} \in \{0,1\}, &\forall j \in J
624 \item \small $P$: the set of primary points.
625 \item $J$: the set of sensors.
626 \item $X_{j}$: indicates whether or not the sensor $j$ is actively sensing (1
627 if yes and 0 if not).
628 \item $\Theta_{p}$: {\it overcoverage}, the number of sensors minus one that
629 are covering the primary point $p$.
630 \item $U_{p}$: {\it undercoverage}, indicates whether or not the primary point
631 $p$ is being covered (1 if not covered and 0 if covered).
632 \item $\alpha_{jp}$: denotes the indicator function of whether the primary point p is covered.
643 \begin{frame}{\small DiLCO Protocol $\blacktriangleright$ DiLCO Protocol Algorithm}
644 %\begin{femtoBlock} {}
646 %\includegraphics[height = 7.2cm]{Figures/algo.jpeg}
647 \includegraphics[height = 7.2cm]{Figures/Algo1.png}
658 \begin{frame}{\small DiLCO Protocol $\blacktriangleright$ Simulation Framework}
662 \caption{Relevant parameters for simulation.}
666 Parameter & Value \\ [0.5ex]
668 Sensing Field & $(50 \times 25)~m^2 $ \\
669 Nodes Number & 50, 100, 150, 200 and 250~nodes \\
670 Initial Energy & 500-700~joules \\
671 Sensing Period & 60 Minutes \\
672 $E_{th}$ & 36 Joules\\
677 Modeling Language & A Mathematical Programming Language (AMPL) \\
678 Optimization Solver & GNU linear Programming Kit (GLPK) \\
679 Network Simulator & Discrete Event Simulator OMNeT++
690 \begin{frame}{\small DiLCO Protocol $\blacktriangleright$ Energy Model \& Performance Metrics }
692 \begin{femtoBlock} {Energy Consumption Model}
697 %\caption{Power consumption values}
699 \begin{tabular}{|l||cccc|}
701 {\bf Sensor status} & MCU & Radio & Sensing & {\it Power (mW)} \\
703 LISTENING & On & On & On & 20.05 \\
704 ACTIVE & On & Off & On & 9.72 \\
705 SLEEP & Off & Off & Off & 0.02 \\
706 COMPUTATION & On & On & On & 26.83 \\
708 \multicolumn{4}{|l}{Energy needed to send or receive a 2-bit content message} & 0.515 \\
715 \begin{femtoBlock} {Performance Metrics}
717 \begin{enumerate}[$\mapsto$]
719 \item {{\bf Coverage Ratio (CR)}}
720 \item{{\bf Number of Active Sensors Ratio (ASR)}}
721 \item {{\bf Energy Consumption}}
722 \item {{\bf Network Lifetime}}
723 %\item {{\bf Execution Time}}
724 %\item {{\bf Stopped Simulation Runs}}
735 \begin{frame}{ \small DiLCO Protocol $\blacktriangleright$ Performance Comparison}
740 \includegraphics[scale=0.5] {Figures/R3/CR.eps}
741 \caption{Coverage ratio for 150 deployed nodes}
742 \label{Figures/ch4/R3/CR}
754 \begin{frame}{ \small DiLCO Protocol $\blacktriangleright$ Performance Comparison}
759 \includegraphics[scale=0.5]{Figures/R3/ASR.eps}
760 \caption{Active sensors ratio for 150 deployed nodes }
761 \label{Figures/ch4/R3/ASR}
769 %\begin{frame}{ \small DiLCO Protocol $\blacktriangleright$ Performance Comparison}
773 %\includegraphics[scale=0.5]{Figures/R3/SR.eps}
774 %\caption{Percentage of stopped simulation runs for 150 deployed nodes }
775 %\label{Figures/ch4/R3/SR}
783 \begin{frame}{ \small DiLCO Protocol $\blacktriangleright$ Performance Comparison}
787 \column{.50\textwidth}
788 \includegraphics[scale=0.35]{Figures/R3/EC95.eps}
789 \footnotesize \\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(a)\\
790 \column{.50\textwidth}
791 \includegraphics[scale=0.35]{Figures/R3/EC50.eps}
792 \footnotesize \\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(b) \\
794 \caption{Energy consumption for (a) $Lifetime_{95}$ and (b) $Lifetime_{50}$}
795 \label{Figures/ch4/R3/EC}
805 \begin{frame}{ \small DiLCO Protocol $\blacktriangleright$ Performance Comparison}
809 \column{.50\textwidth}
810 \includegraphics[scale=0.35]{Figures/R3/LT95.eps}
811 \footnotesize \\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(a)\\
812 \column{.50\textwidth}
813 \includegraphics[scale=0.35]{Figures/R3/LT50.eps}
814 \footnotesize \\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(b) \\
816 \caption{Network lifetime for (a) $Lifetime_{95}$ and (b) $Lifetime_{50}$}
817 \label{Figures/ch4/R3/LT}
830 \section{\small{Multiround Distributed Lifetime Coverage Optimization Protocol (MuDiLCO)}}
836 \begin{frame}{\small MuDiLCO Protocol $\blacktriangleright$ Main Idea}
839 \includegraphics[width=110mm]{Figures/GeneralModel.jpg}
840 \caption{MuDiLCO protocol.}
849 \begin{frame}{\small MuDiLCO Protocol $\blacktriangleright$ Multiround Coverage Problem Formulation}
853 \includegraphics[height = 7.2cm]{Figures/model2.pdf}
860 %\begin{frame}{\small MuDiLCO Protocol $\blacktriangleright$ MuDiLCO Protocol Algorithm}
862 %\begin{femtoBlock} {}
864 %\includegraphics[height = 7.2cm]{Figures/Algo2.png}
872 \begin{frame}{\small MuDiLCO Protocol $\blacktriangleright$ Results Analysis and Comparison}
876 \includegraphics[scale=0.5] {Figures/R1/CR.pdf}
877 \caption{Average coverage ratio for 150 deployed nodes}
886 \begin{frame}{\small MuDiLCO Protocol $\blacktriangleright$ Results Analysis and Comparison}
890 \includegraphics[scale=0.5]{Figures/R1/ASR.pdf}
891 \caption{Active sensors ratio for 150 deployed nodes}
900 %\begin{frame}{\small MuDiLCO Protocol $\blacktriangleright$ Results Analysis and Comparison}
904 %\includegraphics[scale=0.5]{Figures/R1/SR.pdf}
905 %\caption{Cumulative percentage of stopped simulation runs for 150 deployed nodes }
913 %\begin{frame}{\small MuDiLCO Protocol $\blacktriangleright$ Results Analysis and Comparison}
917 %\includegraphics[scale=0.5]{Figures/R1/T.pdf}
918 %\caption{Execution Time (in seconds)}
927 \begin{frame}{\small MuDiLCO Protocol $\blacktriangleright$ Results Analysis and Comparison}
931 \column{.50\textwidth}
932 \includegraphics[scale=0.35]{Figures/R1/EC95.eps}
933 \footnotesize \\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(a)\\
934 \column{.50\textwidth}
935 \includegraphics[scale=0.35]{Figures/R1/EC50.eps}
936 \footnotesize \\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(b) \\
938 \caption{Energy consumption for (a) $Lifetime_{95}$ and (b) $Lifetime_{50}$}
939 \label{Figures/ch4t/R3/EC}
947 \begin{frame}{\small MuDiLCO Protocol $\blacktriangleright$ Results Analysis and Comparison}
951 \column{.50\textwidth}
952 \includegraphics[scale=0.35]{Figures/R1/LT95.eps}
953 \footnotesize \\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(a)\\
954 \column{.50\textwidth}
955 \includegraphics[scale=0.35]{Figures/R1/LT50.eps}
956 \footnotesize \\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(b) \\
958 \caption{Network lifetime for (a) $Lifetime_{95}$ and (b) $Lifetime_{50}$}
959 \label{Figures/ch4/Rh3/EC}
967 \section{\small {Perimeter-based Coverage Optimization (PeCO) to Improve Lifetime in WSNs
974 \begin{frame}{\small PeCO Protocol $\blacktriangleright$ Assumptions and Models}
979 \column{.50\textwidth}
980 \includegraphics[scale=0.40]{Figures/ch6/pcm.jpg}
981 \footnotesize \\~~~~~~~~~~~~~~~~~~~~~~~~~~(a)\\
982 \column{.50\textwidth}
983 $$\alpha = \arccos \left(\dfrac{Dist(u,v)}{2R_s}
985 \includegraphics[scale=0.40]{Figures/ch6/twosensors.jpg}
986 \footnotesize \\~~~~~~~~~~~~~~~~~~~~~~~~~~(b) \\
988 \caption{(a) Perimeter coverage of sensor node 0 and (b) finding the arc of
989 $u$'s perimeter covered by $v$.}
998 \begin{frame}{\small PeCO Protocol $\blacktriangleright$ Assumptions and Models}
1003 \column{.50\textwidth}
1004 \includegraphics[scale=0.33]{Figures/ch6/expcm2.jpg}
1005 \footnotesize \\~~~~~~~~~~~~~~~~~~~~~~~~~~(a)\\
1006 \column{.50\textwidth}
1007 \includegraphics[scale=0.38]{Figures/tbl.jpeg}
1008 \footnotesize \\~~~~~~~~~~~~~~~~~~~~~~~~~~(b) \\
1010 \caption{(a) Maximum coverage levels for perimeter of sensor node $0$. and (b) Coverage intervals and contributing sensors for sensor node 0.}
1019 %%%%%%%%%%%%%%%%%%%%
1021 %%%%%%%%%%%%%%%%%%%%
1022 \begin{frame}{\small PeCO Protocol $\blacktriangleright$ PeCO Protocol Algorithm}
1024 %\includegraphics[height = 7.2cm]{Figures/algo6.jpeg}
1028 \includegraphics[height = 7.2cm]{Figures/Algo3.png}
1033 %%%%%%%%%%%%%%%%%%%%
1035 %%%%%%%%%%%%%%%%%%%%
1036 \begin{frame}{\small PeCO Protocol $\blacktriangleright$ Perimeter-based Coverage Problem Formulation}
1041 \includegraphics[scale=0.49]{Figures/model3.pdf}
1048 %%%%%%%%%%%%%%%%%%%%
1050 %%%%%%%%%%%%%%%%%%%%
1051 \begin{frame}{\small PeCO Protocol $\blacktriangleright$ Performance Evaluation and Analysis}
1055 \includegraphics[scale=0.5] {Figures/ch6/R/CR.eps}
1056 \caption{Coverage ratio for 200 deployed nodes.}
1063 %%%%%%%%%%%%%%%%%%%%
1065 %%%%%%%%%%%%%%%%%%%%
1066 \begin{frame}{\small PeCO Protocol $\blacktriangleright$ Performance Evaluation and Analysis}
1070 \includegraphics[scale=0.5]{Figures/ch6/R/ASR.eps}
1071 \caption{Active sensors ratio for 200 deployed nodes.}
1077 %%%%%%%%%%%%%%%%%%%%
1079 %%%%%%%%%%%%%%%%%%%%
1080 \begin{frame}{\small PeCO Protocol $\blacktriangleright$ Performance Evaluation and Analysis}
1084 \column{.50\textwidth}
1085 \includegraphics[scale=0.35]{Figures/ch6/R/EC95.eps}
1086 \footnotesize \\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(a)\\
1087 \column{.50\textwidth}
1088 \includegraphics[scale=0.35]{Figures/ch6/R/EC50.eps}
1089 \footnotesize \\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(b) \\
1091 \caption{Energy consumption per period for (a)~$Lifetime_{95}$ and (b)~$Lifetime_{50}$.}
1098 %%%%%%%%%%%%%%%%%%%%
1100 %%%%%%%%%%%%%%%%%%%%
1101 \begin{frame}{\small PeCO Protocol $\blacktriangleright$ Performance Evaluation and Analysis}
1105 \column{.50\textwidth}
1106 \includegraphics[scale=0.35]{Figures/ch6/R/LT95.eps}
1107 \footnotesize \\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(a)\\
1108 \column{.50\textwidth}
1109 \includegraphics[scale=0.35]{Figures/ch6/R/LT50.eps}
1110 \footnotesize \\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(b) \\
1112 \caption{Network Lifetime for (a)~$Lifetime_{95}$ and (b)~$Lifetime_{50}$.}
1118 %%%%%%%%%%%%%%%%%%%%
1120 %%%%%%%%%%%%%%%%%%%%
1121 %\begin{frame}{\small PeCO Protocol $\blacktriangleright$ Performance Evaluation and Analysis}
1123 %\begin{figure} [h!]
1124 %\centering \includegraphics[scale=0.5]{Figures/ch6/R/LTa.eps}
1125 %\caption{Network lifetime for different coverage ratios.}
1132 %%%%%%%%%%%%%%%%%%%%
1134 %%%%%%%%%%%%%%%%%%%%
1135 \section{\small {Conclusion and Perspectives}}
1138 %%%%%%%%%%%%%%%%%%%%
1140 %%%%%%%%%%%%%%%%%%%%
1141 \begin{frame}{Conclusion}
1142 \begin{enumerate} [$\blacktriangleright$]
1144 \item Two-step approaches are proposed to optimize both coverage and lifetime performances, where:
1146 \item Sensing field is divided into smaller subregions using divide-and-conquer method.
1147 \item One of the proposed optimization protocols is applied in each subregion in a distributed parallel way.
1149 \item The proposed protocols (DiLCO, MuDiLCO, PeCO) combine two efficient mechanisms:
1151 \item Network leader election, and
1152 \item Sensor activity scheduling based optimization.
1154 \item Our protocols are periodic where each period consists of 4
1157 \item Information exchange,
1158 \item Network leader election,
1159 \item Decision based optimization,
1170 %%%%%%%%%%%%%%%%%%%%
1172 %%%%%%%%%%%%%%%%%%%%
1173 \begin{frame}{Conclusion}
1174 \begin{enumerate} [$\blacktriangleright$]
1176 \item DiLCO and PeCO provide a schedule for one round per period.
1177 \item MuDiLCO provides a schedule for multiple rounds per period.
1178 \item Comparison results show that DiLCO, MuDiLCO, and PeCO protocols:
1180 \item maintain the coverage for a larger number of rounds.
1181 \item use less active nodes to save energy efficiently during sensing.
1182 \item are more powerful against network disconnections.
1183 \item perform the optimization with suitable execution times.
1184 \item consume less energy.
1185 \item prolong the network lifetime.
1191 \begin{frame}{Conclusion}
1193 \begin{block}{\textcolor{white}{Journal Articles}}
1194 \begin{enumerate}[$\lbrack$1$\rbrack$]
1195 \item Ali Kadhum Idrees, Karine Deschinkel, Michel Salomon, and Rapha\"el Couturier. Perimeter-based Coverage Optimization to Improve Lifetime in Wireless Sensor Networks. \textit{Engineering Optimization, 2015, (Submitted)}.
1197 \item Ali Kadhum Idrees, Karine Deschinkel, Michel Salomon, and Rapha\"el Couturier. Multiround Distributed Lifetime Coverage Optimization Protocol in Wireless Sensor Networks. \textit{Ad Hoc Networks, 2015, (Submitted)}.
1199 \item Ali Kadhum Idrees, Karine Deschinkel, Michel Salomon, and Rapha\"el Couturier. Distributed Lifetime Coverage Optimization Protocol in Wireless Sensor Networks. \textit{Journal of Supercomputing , 2015, (Submitted)}.
1203 \begin{block}{\textcolor{white}{Technical Reports}}
1205 \begin{enumerate}[$\lbrack$1$\rbrack$]
1206 \item Ali Kadhum Idrees, Karine Deschinkel, Michel Salomon, and Rapha\"el
1207 Distributed lifetime coverage optimization protocol in wireless sensor networks. Technical Report DISC2014-X, University of Franche-Comte - FEMTO-ST Institute, DISC Research Department, Octobre 2014.
1211 \begin{block}{\textcolor{white}{Conference Articles}}
1212 \begin{enumerate}[$\lbrack$1$\rbrack$]
1213 \item Ali Kadhum Idrees, Karine Deschinkel, Michel Salomon, and Rapha\"el
1214 Coverage and lifetime optimization in heterogeneous energy wireless sensor networks. In ICN 2014, The Thirteenth International Conference on Networks, pages 49–54, 2014.
1220 %%%%%%%%%%%%%%%%%%%%
1222 %%%%%%%%%%%%%%%%%%%%
1223 \begin{frame}{Perspectives}
1224 \begin{enumerate} [$\blacktriangleright$]
1225 \item Investigate the optimal number of subregions.
1226 \item Design a heterogeneous integrated optimization protocol to integrate coverage, routing, and data aggregation protocols.
1227 \item Extend PeCO protocol so that the schedules are planned for multiple
1229 \item Consider particle swarm optimization or evolutionary algorithms to obtain quickly near optimal solutions.
1230 \item Improve our mathematical models to take into account heterogeneous sensors from both energy and node characteristics point of views.
1231 %\item The cluster head will be selected in a distributed way and based on local information.
1238 %%%%%%%%%%%%%%%%%%%%
1240 %%%%%%%%%%%%%%%%%%%%
1241 %\begin{frame}{Mes perspectives}
1245 %%%%%%%%%%%%%%%%%%%%
1247 %%%%%%%%%%%%%%%%%%%%
1251 \textcolor{BleuFemto}{Thank You for Your Attention!}\\\vspace{2cm}
1252 \textcolor{BleuFemto}{Questions?}\\