2 \usepackage{beamerthemefemto}
3 \usepackage[T1]{fontenc}
4 \usepackage{amsfonts,amsmath,amssymb,stmaryrd}
5 \usepackage[frenchb]{babel}
7 \usepackage[utf8]{inputenc}
8 %\usepackage[section]{algorithm}
9 %\usepackage{algorithmic}
12 \usepackage{spverbatim}
22 \usepackage{algorithmic}
23 %\usepackage[ruled,english,boxed,linesnumbered]{algorithm2e}
24 %\usepackage[english]{algorithme}
25 \usepackage{subfigure}
32 \def\setgrouptext#1{\gdef\grouptext{#1}}
33 \newenvironment{groupeditems}{\begin{displaymath}\left.\vbox\bgroup\setgrouptext}{%
34 \egroup\right\rbrace\hbox{\grouptext}\end{displaymath}}
36 \newcommand*\rot{\rotatebox{90}}
37 \newcommand*\OK{\ding{51}}
39 \newcommand{\mcrot}[4]{\multicolumn{#1}{#2}{\rlap{\rotatebox{#3}{#4}~}}}
41 \newcommand*{\twoelementtable}[3][l]%
43 \renewcommand{\arraystretch}{0.8}%
44 \begin{tabular}[t]{@{}#1@{}}%
51 \DeclareGraphicsExtensions{.jpg, .png , .pdf, .bmp, .pdftex}
53 \setbeamertemplate{section in toc}[sections numbered]
54 \setbeamertemplate{subsection in toc}[subsections numbered]
59 \frametitle{Presentation Outline}
60 \tableofcontents[currentsection]
65 \title{\textbf{Distributed Coverage Optimization Techniques for Improving Lifetime of Wireless Sensor Networks} \\\vspace{0.1cm}\hspace{2cm}\textbf{\textcolor{cyan}{\small PhD Dissertation Defense}}}
66 \author{\textbf{\textcolor{green}{Ali Kadhum IDREES}} \\\vspace{0.5cm} \small Under Supervision: \\\textcolor{cyan}{\small Raphaël COUTURIER, Karine DESCHINKEL \& Michel SALOMON} \\\vspace{0.2cm} \textcolor{blue}{ University of Franche-Comté - FEMTO-ST - DISC Dept. - AND Team} \\\vspace{0.2cm}~~~~~~~~~~~~~~~~\textbf{\textcolor{green}{1 October 2015 }}}
68 %\institute[FEMTO-ST, DISC]{\textit{FEMTO-ST - DISC Departement - AND Team}}
75 % ____ _____ ____ _ _ _____
76 % | _ \| ____| __ )| | | |_ _|
77 % | | | | _| | _ \| | | | | |
78 % | |_| | |___| |_) | |_| | | |
79 % |____/|_____|____/ \___/ |_|
87 \setbeamertemplate{background}{\titrefemto}
95 \setbeamertemplate{background}{\pagefemto}
101 \begin{frame} {Problem Definition, Solution, and Objectives}
104 \includegraphics[width=0.495\textwidth]{Figures/6}
106 % \includegraphics[width=0.475\textwidth]{Figures/8}
108 \includegraphics[width=0.495\textwidth]{Figures/10}
110 % \includegraphics[width=0.475\textwidth]{Figures/13}
113 \begin{block}{\textcolor{white}{ MAIN QUESTION?}}
114 \textcolor{black}{How to minimize the energy consumption and extend the network lifetime when covering a certain area?}
122 \begin{frame}{Problem Definition, Solution, and Objectives}
124 \begin{block}{\textcolor{white}{OUR SOLUTION: distributed optimization process}}
125 \bf \textcolor{black}{Division into subregions}\\
126 \bf \textcolor{black}{For each subregion:}
129 \item \bf \textcolor{magenta}{Leader election}
130 \item \bf \textcolor{magenta}{Activity Scheduling based optimization}
136 \includegraphics[width=0.475\textwidth]{Figures/div2}
138 \includegraphics[width=0.475\textwidth]{Figures/act2}
146 %\begin{frame}{Problem Definition, Solution, and Objectives}
148 %\begin{block}{\textcolor{white}{OUR SOLUTION}}
150 % %\item Leader Election for each subregion.
151 % \item \bf \textcolor{magenta}{Activity Scheduling based optimization is planned for each subregion.}
156 % \includegraphics[width=0.775\textwidth]{Figures/act}
165 %\begin{frame}{Problem Definition, Solution, and Objectives}
167 %\begin{block}{\bf \textcolor{white}{Dissertation Objectives}}
168 %\bf \textcolor{black}{Develop energy-efficient distributed optimization protocols that should be able to:}
170 % \item \bf \textcolor{blue}{Schedule node activities by optimize both coverage and lifetime.}
171 % \item \bf \textcolor{blue}{Combine two efficient techniques: leader election and sensor activity scheduling.}
172 % \item \bf \textcolor{blue}{Perform a distributed optimization process.}
185 \frametitle{Presentation Outline}
187 \tableofcontents[section,subsection]
195 \section{\small {State of the Art}}
201 \begin{frame}{Wireless Sensor Networks (WSNs)}
205 \column{.58\textwidth}
208 \includegraphics[height = 3cm]{Figures/WSNT.jpg}
216 \item Electronic low-cost tiny device
217 \item Sense, process and transmit data
218 \item Limited energy, memory and processing capabilities
222 \column{.52\textwidth}
225 \includegraphics[height = 4.5cm]{Figures/WSN.jpg}
229 \includegraphics[height = 2cm]{Figures/sn.jpg}
243 \begin{frame}{Types of Wireless Sensor Networks}
248 %\column{.52\textwidth}
250 % \item Terrestrial WSNs.
251 % \item Underground WSNs.
252 % \item Underwater WSNs.
253 % \item Multimedia WSNs.
258 % \column{.58\textwidth}
260 \includegraphics[height = 7cm]{Figures/typesWSN.pdf}
270 \begin{frame}{Applications}
274 \includegraphics[height = 7cm]{Figures/WSNAP.pdf}
282 \begin{frame}{Energy-Efficient Mechanisms of a working WSN}
287 \includegraphics[height = 5cm]{Figures/WSN-M.pdf}
290 \bf \textcolor{blue} {Our approach: includes cluster architecture and scheduling schemes}
293 %\begin{frame}{Energy-Efficient Mechanisms of a working WSN}
297 % \includegraphics[height = 7cm]{Figures/WSN-S.pdf}
304 \begin{frame}{Network lifetime}
306 \begin{block}{\textcolor{white} {Some definitions:}}
308 \begin{enumerate}[i)]
309 \item \textcolor{black} {Time spent until death of the first sensor (or cluster head).}
310 \item \textcolor{black} {Time spent until death of all wireless sensor nodes in WSN.}
311 \item \textcolor{black} {Time spent by WSN in covering each target by at least one sensor.}
312 \item \textcolor{black} {Time during which the area of interest is covered by at least k nodes.}
313 \item \textcolor{black} {Elapsed time until losing the connectivity or the coverage.}
314 \item \bf \textcolor{red} {Time elapsed until the coverage ratio becomes less than a predetermined threshold $\alpha$.}
318 %\begin{block}{\textcolor{white} {Network lifetime In this dissertation:}}
319 %\textcolor{blue} {Time elapsed until the coverage ratio becomes less than a predetermined threshold $\alpha$.}
328 \begin{frame}{Coverage in Wireless Sensor Networks}
330 \begin{block} <1-> {\textcolor{white} {Coverage definition:}}
331 \textcolor{blue} {Coverage} reflects how well a sensor field is monitored efficiently using as less energy as possible.
336 \begin{block} <2-> {\textcolor{white} {Coverage types:}}
337 \begin{enumerate}[i)]
338 \item \small \textcolor{red} {Area coverage: every point inside an area has to be monitored.}
339 \item \textcolor{blue} {Target coverage:} only a finite number of discrete points called targets have to be monitored.
341 \item \textcolor{blue} {Barrier coverage:} detection of targets as they cross a barrier such as in intrusion detection and border surveillance applications.
347 %\begin{block} <3-> {\textcolor{white} {Coverage type in this dissertation:}}
348 %The work presented in this dissertation deals with \textcolor{red} {area coverage}.
356 \begin{frame}{Existing works}
358 \begin{block} {\textcolor{white} {Coverage approaches:}}
359 %Most existing coverage approaches in literature classified into
360 \begin{enumerate}[i)]
361 \item \textcolor{blue} { Full centralized coverage algorithms}
363 \item Optimal or near optimal solution
364 \item Low computation power for the sensors (except for base station)
365 \item Higher energy consumption for communication in large WSN
366 \item Not scalable for large WSNs
368 \item \textcolor{blue} {Full distributed coverage algorithms}
370 \item Lower quality solution
371 \item Less energy consumption for communication in large WSN
372 \item Reliable and scalable for large WSNs
374 \item \textcolor{red} {Hybrid approaches}
376 \item \textcolor{red} {Globally distributed and locally centralized}
384 %\begin{block} {\textcolor{white} {Coverage protocols in this dissertation:}}
385 %The protocols presented in this dissertation combine between the two above approaches.
391 \begin{frame}{Existing works: DESK algorithm (Vu et al.)}
394 \includegraphics[height = 4.0cm]{Figures/DESK.eps}
399 \item Requires only one-hop neighbor information (fully distributed)
400 \item Each sensor decides its status (Active or Sleep) based on the perimeter coverage model without optimization
405 %\tiny \bf \textcolor{blue}{DESK is chosen for comparison because it works into rounds fashion similar to our approaches, as well as DESK is a full distributed coverage approach.}
410 \begin{frame}{Existing works: GAF algorithm (Xu et al.)}
415 \column{.58\textwidth}
418 \includegraphics[height = 2.7cm]{Figures/GAF1.eps}
422 \includegraphics[height = 3.3cm]{Figures/GAF2.eps}
425 \column{.52\textwidth}
429 \item Distributed energy-based scheduling approach
430 \item Uses geographic location information to divide the area into a fixed square grids
431 \item Nodes are in one of three sates: discovery, active, or sleep
432 \item Only one node staying active in grid
433 \item The fixed grid is square with r units on a side
434 \item Nodes cooperate within each grid to choose the active node
440 % \item \tiny enat: estimated node active time
441 % \item enlt: estimated node lifetime
442 % \item Td,Ta, Ts: discovery, active, and sleep timers
444 % \item Ts = [enat/2, enat]
453 %\tiny \bf \textcolor{blue}{GAF is chosen for comparison because it is famous and easy to implement, as well as many authors referred to it in many publications.}
456 \section{\small {The main scheme for our protocols}}
459 \begin{frame}{Assumptions for our protocols}
462 \begin{enumerate} [$\divideontimes$]
463 \item Static wireless sensor, homogeneous in terms of:
465 \item Sensing, communication, and processing capabilities
467 \item Heterogeneous initial energy
468 \item High density uniform deployment
469 \item Its $R_c\geq 2R_s$ for imply connectivity among active nodes during complete coverage (hypothesis proved by Zhang and Zhou)
471 \item Multi-hop communication
472 \item Known location by:
474 \item Embedded GPS or location discovery algorithm
477 \item Using two kinds of packets:
480 \item ActiveSleep packet
482 \item Five status for each node:
484 \item \small LISTENING, ACTIVE, SLEEP, COMPUTATION, and COMMUNICATION
492 \begin{frame}{Assumptions for our protocols}
495 \includegraphics[height = 7.0cm]{Figures/Pmodels.pdf}
503 \begin{frame}{Our general scheme}
506 \includegraphics[width=110mm]{Figures/GeneralModel.jpg}
510 \item DiLCO and PeCO $\blacktriangleright$ use one round sensing ($T=1$)
511 \item MuDiLCO $\blacktriangleright$ uses multiple rounds sensing ($T=1\cdots T$)
517 \begin{frame}{Our general scheme}
519 \begin{enumerate} [i)]
520 \item \textcolor{blue}{\textbf{INFORMATION EXCHANGE}} $\blacktriangleright$ Sensors exchange through multi-hop communication, their
522 \item \textcolor{magenta}{Position coordinates}, \textcolor{violet}{current remaining energy}, \textcolor{cyan}{sensor node ID}, and \textcolor{red}{number of its one-hop live neighbors}
527 \item \textcolor{blue}{\textbf{LEADER ELECTION}} $\blacktriangleright$ The selection criteria are, in order
529 \item Larger number of neighbors
530 \item Larger remaining energy, and then in case of equality
536 \item \textcolor{blue}{\textbf{DECISION}} $\blacktriangleright$ Leader solves an integer program to
538 \item Select which sensors will be activated in the sensing phase
539 \item Send Active-Sleep packet to each sensor in the subregion
543 \item \textcolor{blue}{\textbf{SENSING}} $\blacktriangleright$ Based on Active-Sleep Packet Information
545 \item Active sensors will execute their sensing task
546 \item Sleep sensors will wait a time equal to the period of sensing to wakeup
558 \section{\small {Distributed Lifetime Coverage Optimization Protocol (DiLCO)}}
564 \begin{frame}{\small DiLCO Protocol $\blacktriangleright$ Coverage Problem Formulation}
567 \includegraphics[height = 7.2cm]{Figures/modell1.pdf}
575 \begin{frame}{\small DiLCO Protocol $\blacktriangleright$ DiLCO Protocol Algorithm}
576 %\begin{femtoBlock} {}
578 %\includegraphics[height = 7.2cm]{Figures/algo.jpeg}
579 \includegraphics[height = 7.2cm]{Figures/Algo1.png}
590 \begin{frame}{\small DiLCO Protocol $\blacktriangleright$ Simulation Framework}
594 \caption{Relevant parameters for simulation.}
598 Parameter & Value \\ [0.5ex]
600 Sensing Field & $(50 \times 25)~m^2 $ \\
601 Nodes Number & 50, 100, 150, 200 and 250~nodes \\
602 Initial Energy & 500-700~joules \\
603 Sensing Period & 60 Minutes \\
604 $E_{th}$ & 36 Joules\\
609 Modeling Language & A Mathematical Programming Language (AMPL) \\
610 Optimization Solver & GNU linear Programming Kit (GLPK) \\
611 Network Simulator & Discrete Event Simulator OMNeT++
622 \begin{frame}{\small DiLCO Protocol $\blacktriangleright$ Energy Model \& Performance Metrics }
624 \begin{femtoBlock} {Energy Consumption Model}
629 %\caption{Power consumption values}
631 \begin{tabular}{|l||cccc|}
633 {\bf Sensor status} & MCU & Radio & Sensing & {\it Power (mW)} \\
635 LISTENING & On & On & On & 20.05 \\
636 ACTIVE & On & Off & On & 9.72 \\
637 SLEEP & Off & Off & Off & 0.02 \\
638 COMPUTATION & On & On & On & 26.83 \\
640 \multicolumn{4}{|l}{Energy needed to send or receive a 2-bit content message} & 0.515 \\
647 \begin{femtoBlock} {Performance Metrics}
649 \begin{enumerate}[$\mapsto$]
651 \item {{\bf Coverage Ratio (CR)}}
652 \item{{\bf Number of Active Sensors Ratio (ASR)}}
653 \item {{\bf Energy Consumption}}
654 \item {{\bf Network Lifetime}}
655 %\item {{\bf Execution Time}}
656 %\item {{\bf Stopped Simulation Runs}}
667 \begin{frame}{ \small DiLCO Protocol $\blacktriangleright$ Performance Comparison}
672 \includegraphics[scale=0.5] {Figures/R3/CR.eps}
673 \caption{Coverage ratio for 150 deployed nodes}
674 \label{Figures/ch4/R3/CR}
686 \begin{frame}{ \small DiLCO Protocol $\blacktriangleright$ Performance Comparison}
691 \includegraphics[scale=0.5]{Figures/R3/ASR.eps}
692 \caption{Active sensors ratio for 150 deployed nodes }
693 \label{Figures/ch4/R3/ASR}
701 %\begin{frame}{ \small DiLCO Protocol $\blacktriangleright$ Performance Comparison}
705 %\includegraphics[scale=0.5]{Figures/R3/SR.eps}
706 %\caption{Percentage of stopped simulation runs for 150 deployed nodes }
707 %\label{Figures/ch4/R3/SR}
715 \begin{frame}{ \small DiLCO Protocol $\blacktriangleright$ Performance Comparison}
719 \column{.50\textwidth}
720 \includegraphics[scale=0.35]{Figures/R3/EC95.eps}
721 \footnotesize \\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(a)\\
722 \column{.50\textwidth}
723 \includegraphics[scale=0.35]{Figures/R3/EC50.eps}
724 \footnotesize \\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(b) \\
726 \caption{Energy consumption for (a) $Lifetime_{95}$ and (b) $Lifetime_{50}$}
727 \label{Figures/ch4/R3/EC}
737 \begin{frame}{ \small DiLCO Protocol $\blacktriangleright$ Performance Comparison}
741 \column{.50\textwidth}
742 \includegraphics[scale=0.35]{Figures/R3/LT95.eps}
743 \footnotesize \\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(a)\\
744 \column{.50\textwidth}
745 \includegraphics[scale=0.35]{Figures/R3/LT50.eps}
746 \footnotesize \\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(b) \\
748 \caption{Network lifetime for (a) $Lifetime_{95}$ and (b) $Lifetime_{50}$}
749 \label{Figures/ch4/R3/LT}
762 \section{\small{Multiround Distributed Lifetime Coverage Optimization Protocol (MuDiLCO)}}
768 %\begin{frame}{\small MuDiLCO Protocol $\blacktriangleright$ Main Idea}
771 % \includegraphics[width=110mm]{Figures/GeneralModel.jpg}
772 %\caption{MuDiLCO protocol.}
781 \begin{frame}{\small MuDiLCO Protocol $\blacktriangleright$ Multiround Coverage Problem Formulation}
785 \includegraphics[height = 7.2cm]{Figures/modell2.pdf}
792 %\begin{frame}{\small MuDiLCO Protocol $\blacktriangleright$ MuDiLCO Protocol Algorithm}
794 %\begin{femtoBlock} {}
796 %\includegraphics[height = 7.2cm]{Figures/Algo2.png}
804 \begin{frame}{\small MuDiLCO Protocol $\blacktriangleright$ Results Analysis and Comparison}
808 \includegraphics[scale=0.5] {Figures/R1/CR.pdf}
809 \caption{Average coverage ratio for 150 deployed nodes}
818 \begin{frame}{\small MuDiLCO Protocol $\blacktriangleright$ Results Analysis and Comparison}
822 \includegraphics[scale=0.5]{Figures/R1/ASR.pdf}
823 \caption{Active sensors ratio for 150 deployed nodes}
832 %\begin{frame}{\small MuDiLCO Protocol $\blacktriangleright$ Results Analysis and Comparison}
836 %\includegraphics[scale=0.5]{Figures/R1/SR.pdf}
837 %\caption{Cumulative percentage of stopped simulation runs for 150 deployed nodes }
845 %\begin{frame}{\small MuDiLCO Protocol $\blacktriangleright$ Results Analysis and Comparison}
849 %\includegraphics[scale=0.5]{Figures/R1/T.pdf}
850 %\caption{Execution Time (in seconds)}
859 \begin{frame}{\small MuDiLCO Protocol $\blacktriangleright$ Results Analysis and Comparison}
863 \column{.50\textwidth}
864 \includegraphics[scale=0.35]{Figures/R1/EC95.eps}
865 \footnotesize \\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(a)\\
866 \column{.50\textwidth}
867 \includegraphics[scale=0.35]{Figures/R1/EC50.eps}
868 \footnotesize \\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(b) \\
870 \caption{Energy consumption for (a) $Lifetime_{95}$ and (b) $Lifetime_{50}$}
871 \label{Figures/ch4t/R3/EC}
879 \begin{frame}{\small MuDiLCO Protocol $\blacktriangleright$ Results Analysis and Comparison}
883 \column{.50\textwidth}
884 \includegraphics[scale=0.35]{Figures/R1/LT95.eps}
885 \footnotesize \\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(a)\\
886 \column{.50\textwidth}
887 \includegraphics[scale=0.35]{Figures/R1/LT50.eps}
888 \footnotesize \\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(b) \\
890 \caption{Network lifetime for (a) $Lifetime_{95}$ and (b) $Lifetime_{50}$}
891 \label{Figures/ch4/Rh3/EC}
899 \section{\small {Perimeter-based Coverage Optimization (PeCO)}}
905 \begin{frame}{\small PeCO Protocol $\blacktriangleright$ Assumptions and Models}
910 \column{.50\textwidth}
911 \includegraphics[scale=0.40]{Figures/ch6/pcm.jpg}
912 \footnotesize \\~~~~~~~~~~~~~~~~~~~~~~~~~~(a)\\
913 \column{.50\textwidth}
914 $$\alpha = \arccos \left(\dfrac{Dist(u,v)}{2R_s}
916 \includegraphics[scale=0.40]{Figures/ch6/twosensors.jpg}
917 \footnotesize \\~~~~~~~~~~~~~~~~~~~~~~~~~~(b) \\
919 \caption{(a) Perimeter coverage of sensor node 0 and (b) finding the arc of
920 $u$'s perimeter covered by $v$.}
929 \begin{frame}{\small PeCO Protocol $\blacktriangleright$ Assumptions and Models}
934 \column{.50\textwidth}
935 \includegraphics[scale=0.33]{Figures/ch6/expcm2.jpg}
936 \footnotesize \\~~~~~~~~~~~~~~~~~~~~~~~~~~(a)\\
937 \column{.50\textwidth}
938 \includegraphics[scale=0.38]{Figures/tbl.jpeg}
939 \footnotesize \\~~~~~~~~~~~~~~~~~~~~~~~~~~(b) \\
941 \caption{(a) Maximum coverage levels for perimeter of sensor node $0$. and (b) Coverage intervals and contributing sensors for sensor node 0.}
953 \begin{frame}{\small PeCO Protocol $\blacktriangleright$ PeCO Protocol Algorithm}
955 %\includegraphics[height = 7.2cm]{Figures/algo6.jpeg}
959 \includegraphics[height = 7.2cm]{Figures/Algo3.png}
967 \begin{frame}{\small PeCO Protocol $\blacktriangleright$ Perimeter-based Coverage Problem Formulation}
972 \includegraphics[scale=0.49]{Figures/modell3.pdf}
982 \begin{frame}{\small PeCO Protocol $\blacktriangleright$ Performance Evaluation and Analysis}
986 \includegraphics[scale=0.5] {Figures/ch6/R/CR.eps}
987 \caption{Coverage ratio for 200 deployed nodes.}
997 \begin{frame}{\small PeCO Protocol $\blacktriangleright$ Performance Evaluation and Analysis}
1001 \includegraphics[scale=0.5]{Figures/ch6/R/ASR.eps}
1002 \caption{Active sensors ratio for 200 deployed nodes.}
1008 %%%%%%%%%%%%%%%%%%%%
1010 %%%%%%%%%%%%%%%%%%%%
1011 \begin{frame}{\small PeCO Protocol $\blacktriangleright$ Performance Evaluation and Analysis}
1015 \column{.50\textwidth}
1016 \includegraphics[scale=0.35]{Figures/ch6/R/EC95.eps}
1017 \footnotesize \\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(a)\\
1018 \column{.50\textwidth}
1019 \includegraphics[scale=0.35]{Figures/ch6/R/EC50.eps}
1020 \footnotesize \\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(b) \\
1022 \caption{Energy consumption per period for (a)~$Lifetime_{95}$ and (b)~$Lifetime_{50}$.}
1029 %%%%%%%%%%%%%%%%%%%%
1031 %%%%%%%%%%%%%%%%%%%%
1032 \begin{frame}{\small PeCO Protocol $\blacktriangleright$ Performance Evaluation and Analysis}
1036 \column{.50\textwidth}
1037 \includegraphics[scale=0.35]{Figures/ch6/R/LT95.eps}
1038 \footnotesize \\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(a)\\
1039 \column{.50\textwidth}
1040 \includegraphics[scale=0.35]{Figures/ch6/R/LT50.eps}
1041 \footnotesize \\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(b) \\
1043 \caption{Network Lifetime for (a)~$Lifetime_{95}$ and (b)~$Lifetime_{50}$.}
1049 %%%%%%%%%%%%%%%%%%%%
1051 %%%%%%%%%%%%%%%%%%%%
1052 %\begin{frame}{\small PeCO Protocol $\blacktriangleright$ Performance Evaluation and Analysis}
1054 %\begin{figure} [h!]
1055 %\centering \includegraphics[scale=0.5]{Figures/ch6/R/LTa.eps}
1056 %\caption{Network lifetime for different coverage ratios.}
1063 %%%%%%%%%%%%%%%%%%%%
1065 %%%%%%%%%%%%%%%%%%%%
1066 \section{\small {Conclusion and Perspectives}}
1069 %%%%%%%%%%%%%%%%%%%%
1071 %%%%%%%%%%%%%%%%%%%%
1072 \begin{frame}{Conclusion}
1073 \begin{enumerate} [$\blacktriangleright$]
1075 \item Two-step approaches are proposed to optimize both coverage and lifetime performances, where:
1077 \item Sensing field is divided into smaller subregions using divide-and-conquer method.
1078 \item One of the proposed optimization protocols is applied in each subregion in a distributed parallel way.
1080 \item The proposed protocols (DiLCO, MuDiLCO, PeCO) combine two efficient mechanisms:
1082 \item Network leader election, and
1083 \item Sensor activity scheduling based optimization.
1085 \item Our protocols are periodic where each period consists of 4
1088 \item Information exchange,
1089 \item Network leader election,
1090 \item Decision based optimization,
1101 %%%%%%%%%%%%%%%%%%%%
1103 %%%%%%%%%%%%%%%%%%%%
1104 \begin{frame}{Conclusion}
1105 \begin{enumerate} [$\blacktriangleright$]
1107 \item DiLCO and PeCO provide a schedule for one round per period.
1108 \item MuDiLCO provides a schedule for multiple rounds per period.
1109 \item Comparison results show that DiLCO, MuDiLCO, and PeCO protocols:
1111 \item maintain the coverage for a larger number of rounds.
1112 \item use less active nodes to save energy efficiently during sensing.
1113 \item are more powerful against network disconnections.
1114 \item perform the optimization with suitable execution times.
1115 \item consume less energy.
1116 \item prolong the network lifetime.
1122 \begin{frame}{Conclusion}
1124 \begin{block}{\textcolor{white}{Journal Articles}}
1125 \begin{enumerate}[$\lbrack$1$\rbrack$]
1126 \item Ali Kadhum Idrees, Karine Deschinkel, Michel Salomon, and Rapha\"el Couturier. Perimeter-based Coverage Optimization to Improve Lifetime in Wireless Sensor Networks. \textit{Engineering Optimization, 2015, (Submitted)}.
1128 \item Ali Kadhum Idrees, Karine Deschinkel, Michel Salomon, and Rapha\"el Couturier. Multiround Distributed Lifetime Coverage Optimization Protocol in Wireless Sensor Networks. \textit{Ad Hoc Networks, 2015, (Submitted)}.
1130 \item Ali Kadhum Idrees, Karine Deschinkel, Michel Salomon, and Rapha\"el Couturier. Distributed Lifetime Coverage Optimization Protocol in Wireless Sensor Networks. \textit{Journal of Supercomputing , 2015, (Submitted)}.
1134 \begin{block}{\textcolor{white}{Technical Reports}}
1136 \begin{enumerate}[$\lbrack$1$\rbrack$]
1137 \item Ali Kadhum Idrees, Karine Deschinkel, Michel Salomon, and Rapha\"el
1138 Distributed lifetime coverage optimization protocol in wireless sensor networks. Technical Report DISC2014-X, University of Franche-Comte - FEMTO-ST Institute, DISC Research Department, Octobre 2014.
1142 \begin{block}{\textcolor{white}{Conference Articles}}
1143 \begin{enumerate}[$\lbrack$1$\rbrack$]
1144 \item Ali Kadhum Idrees, Karine Deschinkel, Michel Salomon, and Rapha\"el
1145 Coverage and lifetime optimization in heterogeneous energy wireless sensor networks. In ICN 2014, The Thirteenth International Conference on Networks, pages 49–54, 2014.
1151 %%%%%%%%%%%%%%%%%%%%
1153 %%%%%%%%%%%%%%%%%%%%
1154 \begin{frame}{Perspectives}
1155 \begin{enumerate} [$\blacktriangleright$]
1156 \item Investigate the optimal number of subregions.
1157 \item Design a heterogeneous integrated optimization protocol to integrate coverage, routing, and data aggregation protocols.
1158 \item Extend PeCO protocol so that the schedules are planned for multiple
1160 \item Consider particle swarm optimization or evolutionary algorithms to obtain quickly near optimal solutions.
1161 \item Improve our mathematical models to take into account heterogeneous sensors from both energy and node characteristics point of views.
1162 %\item The cluster head will be selected in a distributed way and based on local information.
1169 %%%%%%%%%%%%%%%%%%%%
1171 %%%%%%%%%%%%%%%%%%%%
1172 %\begin{frame}{Mes perspectives}
1176 %%%%%%%%%%%%%%%%%%%%
1178 %%%%%%%%%%%%%%%%%%%%
1182 \textcolor{BleuFemto}{Thank You for Your Attention!}\\\vspace{2cm}
1183 \textcolor{BleuFemto}{Questions?}\\