

Distributed Coverage Optimization Techniques for Improving Lifetime of Wireless Sensor Networks

PhD Dissertation Defense

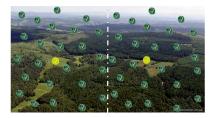
Ali Kadhum IDREES

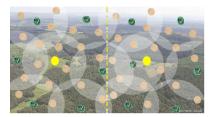
Under Supervision: Raphaël COUTURIER, Karine DESCHINKEL & Michel SALOMON University of Franche-Comté - FEMTO-ST - DISC Dept. - AND Team

1 October 2015

Problem definition and solution

MAIN QUESTION


How to minimize the energy consumption and extend the network lifetime when covering a certain area?

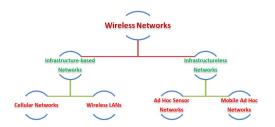


Problem definition and solution

OUR SOLUTION > Distributed optimization process

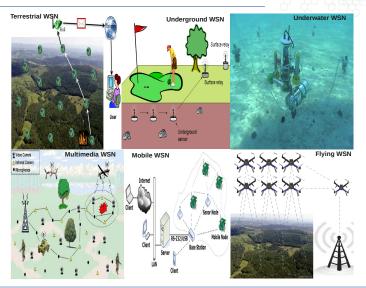
- i) Division into subregions
- ii) For each subregion
 - Leader election
 - Activity Scheduling based optimization

- 1. State of the Art
- 2. The main scheme for our protocols
- 3. Distributed Lifetime Coverage Optimization Protocol (DiLCO)
- 4. Multiround Distributed Lifetime Coverage Optimization Protocol (MuDiLCO)
- 5. Perimeter-based Coverage Optimization (PeCO)
- 6. Conclusion and perspectives

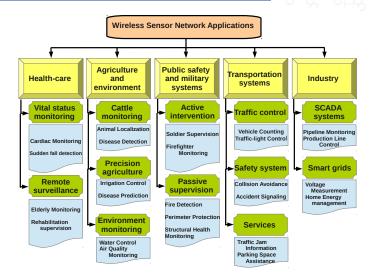


- 1. State of the Art
- 2. The main scheme for our protocols
- 3. Distributed Lifetime Coverage Optimization Protocol (DiLCO)
- 4. Multiround Distributed Lifetime Coverage Optimization Protocol (MuDiLCO)
- 5. Perimeter-based Coverage Optimization (PeCO)
- 6. Conclusion and perspectives

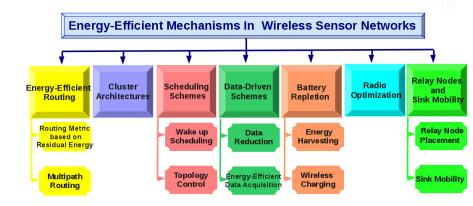
Wireless Sensor Networks (WSNs)


Sensor

- Electronic low-cost tiny device
- Sense, process and transmit data
- Limited energy, memory and processing capabilities



Types of Wireless Sensor Networks



Applications

Energy-Efficient Mechanisms of a working WSN

Our approach includes cluster architecture and scheduling schemes

Some definitions

- i) Time spent until death of the first sensor (or cluster head)
- ii) Time spent until death of all wireless sensor nodes in WSN
- iii) Time spent by WSN in covering each target by at least one sensor
- $\mathsf{iv})$ Time during which the area of interest is covered by at least k nodes
- $\boldsymbol{v})\;$ Elapsed time until losing the connectivity or the coverage
- vi) Time elapsed until the coverage ratio becomes less than a predetermined threshold α

Coverage definition

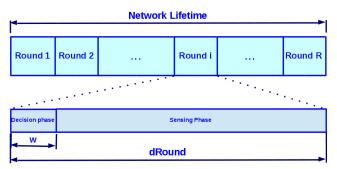
Coverage reflects how well a sensor field is monitored efficiently using as less energy as possible

Coverage definition

Coverage reflects how well a sensor field is monitored efficiently using as less energy as possible

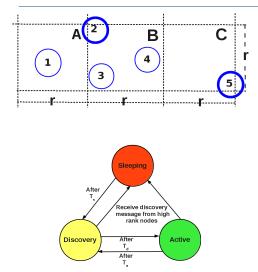
Coverage types

- i) Area coverage > every point inside an area has to be monitored
- ii) Target coverage ► only a finite number of discrete points called targets have to be monitored
- iii) Barrier coverage ► detection of targets as they cross a barrier such as in intrusion detection and border surveillance applications


Coverage approaches

i) Full centralized coverage algorithms

- Optimal or near optimal solution
- Low computation power for the sensors (except for base station)
- Higher energy consumption for communication in large WSN
- Not scalable for large WSNs
- ii) Full distributed coverage algorithms
 - Lower quality solution
 - Less energy consumption for communication in large WSN
 - Reliable and scalable for large WSNs
- iii) Hybrid approaches
 - Globally distributed and locally centralized

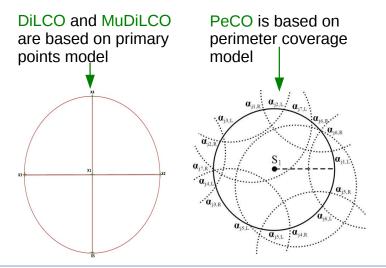

Existing works > DESK algorithm (Vu et al.)

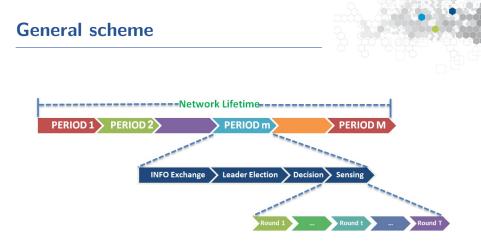
- Requires only one-hop neighbor information (fully distributed)
- Each sensor decides its status (Active or Sleep) based on the perimeter coverage model, without optimization

Existing works **>** GAF algorithm (Xu et al.)

- Distributed energy-based scheduling approach
- Uses geographic location information to divide the area into a fixed square grids
- Nodes are in one of three sates
 discovery, active, or sleep
- Only one node staying active in grid
- The fixed grid is square with r units on a side
- Nodes cooperate within each grid to choose the active node

1. State of the Art


- 2. The main scheme for our protocols
- 3. Distributed Lifetime Coverage Optimization Protocol (DiLCO)
- 4. Multiround Distributed Lifetime Coverage Optimization Protocol (MuDiLCO)
- 5. Perimeter-based Coverage Optimization (PeCO)
- 6. Conclusion and perspectives


Assumptions for our protocols

- * Static wireless sensor, homogeneous in terms of
 - · Sensing, communication, and processing capabilities
- * Heterogeneous initial energy
- * High density uniform deployment
- * $R_c \ge 2R_s$ complete coverage \Rightarrow connectivity (proved by Zhang and Zhou)
- * Multi-hop communication
- * Known location by
 - Embedded GPS or location discovery algorithm
- * Using two kinds of packets
 - INFO packet
 - ActiveSleep packet
- * Five status for each node
 - LISTENING, ACTIVE, SLEEP, COMPUTATION, and
 - COMMUNICATION

- DiLCO and PeCO \blacktriangleright one round sensing (T = 1)
- MuDiLCO \blacktriangleright multiple rounds sensing ($T = 1 \cdots T$)

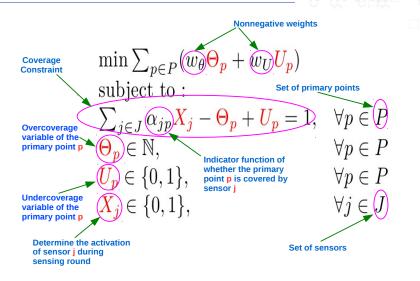
General scheme

- i) INFORMATION EXCHANGE ► Sensors exchange through multi-hop communication, their
 - Position coordinates, current remaining energy, sensor node ID, and number of its one-hop live neighbors
- ii) **LEADER ELECTION** ► The selection criteria are, in order
 - Larger number of neighbors
 - · Larger remaining energy, and then in case of equality
 - Larger ID
- iii) **DECISION** ► Leader solves an integer program to
 - Select which sensors will be activated in the sensing phase
 - Send Active-Sleep packet to each sensor in the subregion
- iv) **SENSING** ► Based on Active-Sleep Packet Information
 - Active sensors will execute their sensing task
 - Sleep sensors will wait a time equal to the period of sensing to wakeup

1. State of the Art

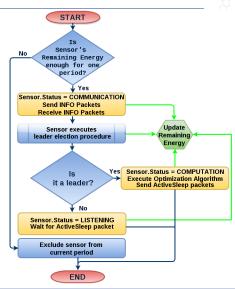
2. The main scheme for our protocols

3. Distributed Lifetime Coverage Optimization Protocol (DiLCO)


4. Multiround Distributed Lifetime Coverage Optimization Protocol (MuDiLCO)

5. Perimeter-based Coverage Optimization (PeCO)

6. Conclusion and perspectives

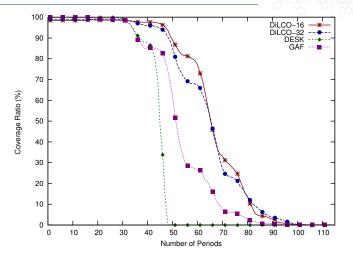


DiLCO protocol Coverage problem formulation

DiLCO protocol DiLCO protocol algorithm

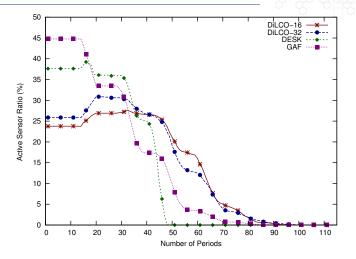
 $\operatorname{TABLE:}$ Relevant parameters for simulation

Parameter	Value			
Sensing Field	$(50 \times 25) m^2$			
Nodes Number	50, 100, 150, 200 and 250 nodes			
Initial Energy	500-700 joules			
Sensing Period	60 Minutes			
E_{th}	36 Joules			
R_s	5 m			
R_c	10 m			
W _⊖	1			
WU	$ P ^{2}$			
Modeling Language	A Mathematical Programming Language (AMPL)			
Optimization Solver	GNU linear Programming Kit (GLPK)			
Network Simulator	lator Discrete Event Simulator OMNeT++			


Energy consumption model

Sensor status	MCU	Radio	Sensing	Power (mW)
LISTENING	On	On	On	20.05
ACTIVE	On	Off	On	9.72
SLEEP	Off	Off	Off	0.02
COMPUTATION	On	On	On	26.83
Energy needed to s	0.515			

Performance metrics


- ► Coverage Ratio (CR)
- Number of Active Sensors Ratio (ASR)
- Energy consumption
- Network lifetime

 $\operatorname{Figure:}$ Coverage ratio for 150 deployed nodes

 $\operatorname{Figure:}$ Active sensors ratio for 150 deployed nodes

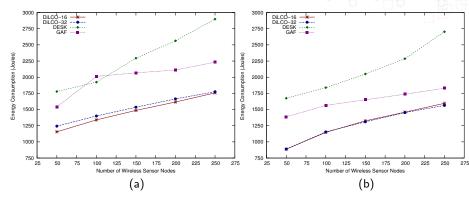


FIGURE: Energy consumption for (a) Lifetime₉₅ and (b) Lifetime₅₀

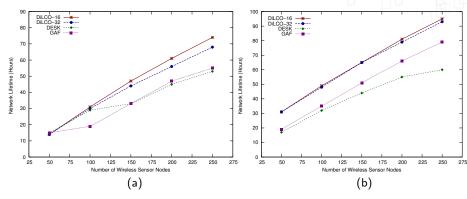
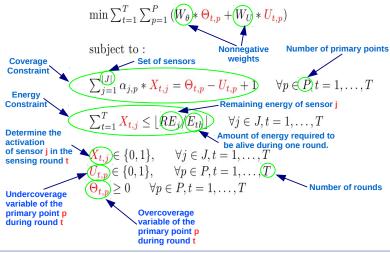
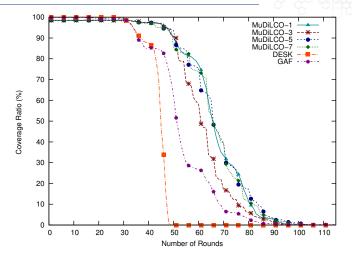


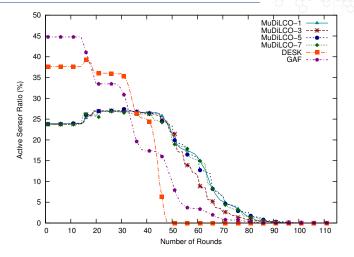
FIGURE: Network lifetime for (a) Lifetime₉₅ and (b) Lifetime₅₀



1. State of the Art


- 2. The main scheme for our protocols
- 3. Distributed Lifetime Coverage Optimization Protocol (DiLCO)
- 4. Multiround Distributed Lifetime Coverage Optimization Protocol (MuDiLCO)
- 5. Perimeter-based Coverage Optimization (PeCO)
- 6. Conclusion and perspectives

MuDiLCO protocol Multiround coverage problem Formulation



 $\operatorname{Figure:}$ Average coverage ratio for 150 deployed nodes

 Figure : Active sensors ratio for 150 deployed nodes

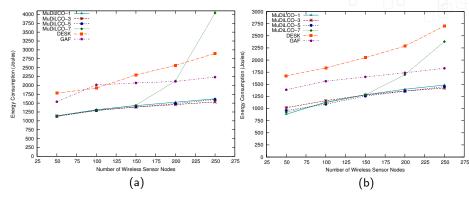


FIGURE: Energy consumption for (a) Lifetime₉₅ and (b) Lifetime₅₀

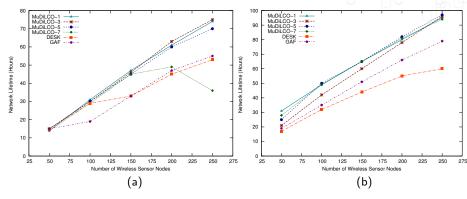


FIGURE: Network lifetime for (a) Lifetime₉₅ and (b) Lifetime₅₀

1. State of the Art

- 2. The main scheme for our protocols
- 3. Distributed Lifetime Coverage Optimization Protocol (DiLCO)
- 4. Multiround Distributed Lifetime Coverage Optimization Protocol (MuDiLCO)
- 5. Perimeter-based Coverage Optimization (PeCO)
- 6. Conclusion and perspectives

PeCO protocol > Assumptions and models

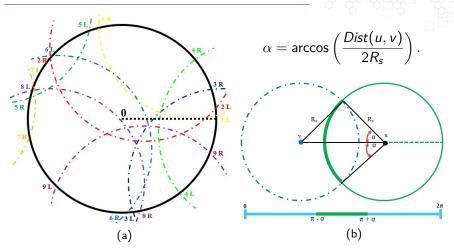
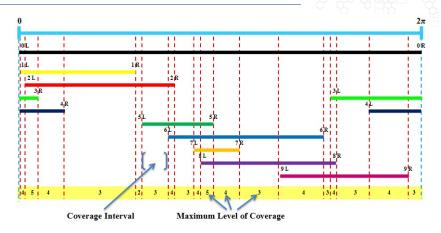
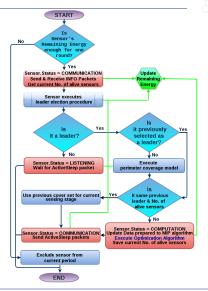
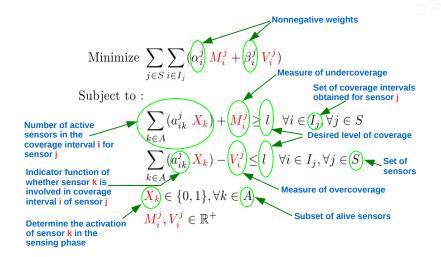



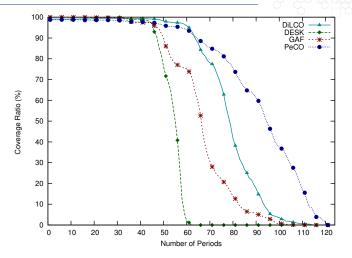
FIGURE: (a) Perimeter coverage of sensor node 0 and (b) finding the arc of u's perimeter covered by v.


PeCO protocol ► Assumptions and models

For example, the interval between 3R to 4R is covered by 4 sensors (0,1,2,4), it means the coverage level is 4



PeCO protocol ► PeCO protocol algorithm


PeCO protocol > Perimeter-based coverage problem formulation

-11

PeCO protocol > Performance evaluation and analysis

 $\operatorname{Figure:}$ Coverage ratio for 200 deployed nodes.

PeCO protocol > Performance evaluation and analysis

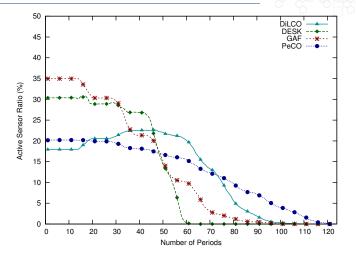


FIGURE: Active sensors ratio for 200 deployed nodes.

PeCO protocol Performance evaluation and analysis

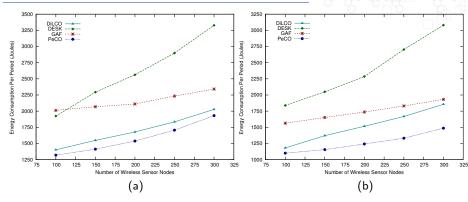


FIGURE: Energy consumption per period for (a) $Lifetime_{95}$ and (b) $Lifetime_{50}$.

PeCO protocol Performance evaluation and analysis

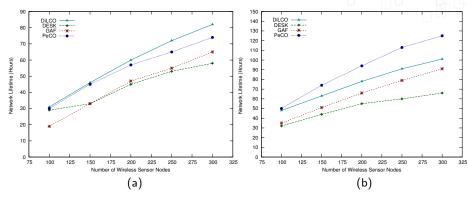


FIGURE: Network lifetime for (a) Lifetime₉₅ and (b) Lifetime₅₀.

1. State of the Art

- 2. The main scheme for our protocols
- 3. Distributed Lifetime Coverage Optimization Protocol (DiLCO)
- 4. Multiround Distributed Lifetime Coverage Optimization Protocol (MuDiLCO)
- 5. Perimeter-based Coverage Optimization (PeCO)
- 6. Conclusion and perspectives

Conclusion

- Two-step approaches are proposed to optimize both coverage and lifetime performances, where :
 - Sensing field is divided into smaller subregions using divide-and-conquer method
 - One of the proposed optimization protocols is applied in each subregion in a distributed parallel way
- The proposed protocols (DiLCO, MuDiLCO, PeCO) combine two efficient mechanisms
 - Network leader election, and
 - Sensor activity scheduling based optimization
- Our protocols are periodic where each period consists of 4 phases
 - Information exchange
 - Network leader election
 - Decision based optimization
 - Sensing.

- DiLCO and PeCO provide a schedule for one round per period
- MuDiLCO provides a schedule for multiple rounds per period
- Comparison results show that DiLCO, MuDiLCO, and PeCO protocols
 - Maintain the coverage for a larger number of rounds
 - Use less active nodes to save energy efficiently during sensing
 - Are more powerful against network disconnections
 - Perform the optimization with suitable execution times
 - Consume less energy
 - Prolong the network lifetime

Conclusion

Journal Articles

- Ali Kadhum Idrees, Karine Deschinkel, Michel Salomon, and Raphaël Couturier. Perimeter-based Coverage Optimization to Improve Lifetime in Wireless Sensor Networks. Engineering Optimization, 2015, (Submitted).
- [2] Ali Kadhum Idrees, Karine Deschinkel, Michel Salomon, and Raphaël Couturier. Multiround Distributed Lifetime Coverage Optimization Protocol in Wireless Sensor Networks. Ad Hoc Networks, 2015, (Submitted).
- [3] Ali Kadhum Idrees, Karine Deschinkel, Michel Salomon, and Raphaël Couturier. Distributed Lifetime Coverage Optimization Protocol in Wireless Sensor Networks. *Journal of Supercomputing*, 2015, (Submitted).

Technical Reports

 Ali Kadhum Idrees, Karine Deschinkel, Michel Salomon, and Raphaël Distributed lifetime coverage optimization protocol in wireless sensor networks. Technical Report DISC2014-X, University of Franche-Comte - FEMTO-ST Institute, DISC Research Department, Octobre 2014.

Conference Articles

 Ali Kadhum Idrees, Karine Deschinkel, Michel Salomon, and Raphaël Coverage and lifetime optimization in heterogeneous energy wireless sensor networks. In ICN 2014, The Thirteenth International Conference on Networks, pages 49–54, 2014.

- Investigate the optimal number of subregions
- Design a heterogeneous integrated optimization protocol to integrate coverage, routing, and data aggregation protocols
- Extend PeCO protocol so that the schedules are planned for multiple sensing periods
- Consider particle swarm optimization or evolutionary algorithms to obtain quickly near optimal solutions
- Improve our mathematical models to take into account heterogeneous sensors from both energy and node characteristics point of views

Thank You for Your Attention !

Questions?

