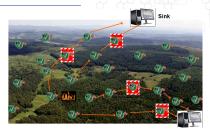


Distributed Coverage Optimization Techniques for Improving Lifetime of Wireless Sensor Networks

PhD Dissertation Defense

Ali Kadhum IDREES

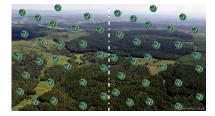

Under Supervision: Raphaël COUTURIER, Karine DESCHINKEL & Michel SALOMON University of Franche-Comté - FEMTO-ST - DISC Dept. - AND Team

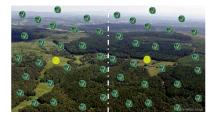
1 October 2015

Problem Definition, Solution, and Objectives

MAIN QUESTION?

How to reduce the redundancy while coverage preservation for prolong the network lifetime continuously and effectively when monitoring a certain area of interest ?

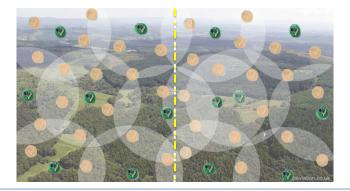



Problem Definition, Solution, and Objectives

OUR SOLUTION

The area of interest is divided into subregions using a divide-and conquer method and then combine two efficient techniques :

• Leader Election for each subregion.



Problem Definition, Solution, and Objectives

OUR SOLUTION

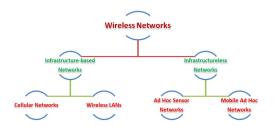
• Activity Scheduling based optimization is planned for each subregion.

Dissertation Objectives

Develop energy-efficient distributed optimization protocols that should be able to :

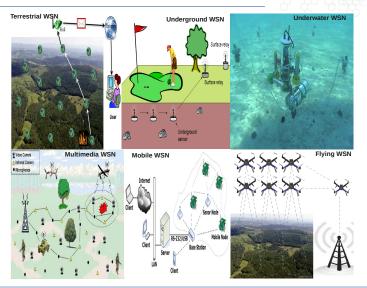
- Schedule node activities by optimize both coverage and lifetime.
- Combine two efficient techniques : leader election and sensor activity scheduling.
- Perform a distributed optimization process.

Presentation Outline

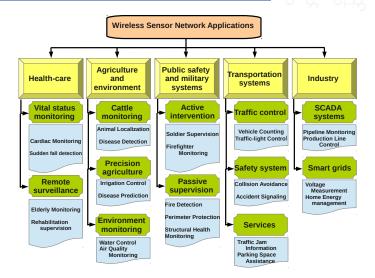


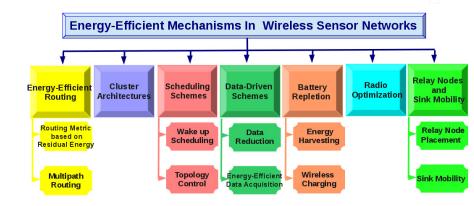
Presentation Outline

Wireless Sensor Networks (WSNs)


Sensor

- Electronic Low-cost tiny device.
- Sense, process and transmit data.
- Limited energy, memory and processing capabilities.


Types of Wireless Sensor Networks


 \mathbb{C}^{d}

Applications

Energy-Efficient Mechanisms of a working WSN

Some network lifetime definitons :

- i) Time spent until death of the first sensor (or cluster head).
- ii) Time spent until death of all wireless sensor nodes in WSN.
- iii) Time spent by WSN in covering each target by at least one sensor.
- iv) Time during which the area of interest is covered by at least k nodes.
- v) Elapsed time until losing the connectivity or the coverage.

Network lifetime In this dissertation :

Time elapsed until the coverage ratio becomes less than a predetermined threshold α .

Coverage in Wireless Sensor Networks

Coverage Definition :

Coverage reflects how well a sensor field is monitored efficiently using as less energy as possible.

Coverage in Wireless Sensor Networks

Coverage Definition :

Coverage reflects how well a sensor field is monitored efficiently using as less energy as possible.

Coverage Types :

- 1. Area coverage : every point inside an area has to be monitored.
- 2. Target coverage : is to cover only a finite number of discrete points called targets.
- 3. Barrier coverage : is to detect targets as they cross a barrier such as in intrusion detection and border surveillance applications.

Coverage Definition :

Coverage reflects how well a sensor field is monitored efficiently using as less energy as possible.

Coverage Types :

- 1. Area coverage : every point inside an area has to be monitored.
- 2. Target coverage : is to cover only a finite number of discrete points called targets.
- 3. Barrier coverage : is to detect targets as they cross a barrier such as in intrusion detection and border surveillance applications.

Coverage type in this dissertation :

The work presented in this dissertation deals with area coverage.

Existing Works

Coverage Approaches :

Most existing coverage approaches in literature classified into

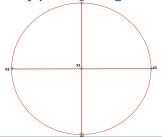
A) Full centralized coverage algorithms.

- Optimal or near optimal solution.
- low computation power for the sensors (except for base station).
- High communication overhead.
- Not scalable for large WSNs.
- B) Full distributed coverage algorithms.
 - Lower quality solution.
 - High communication overhead especially for dense WSNs.
 - Reliable and scalable for large WSNs.

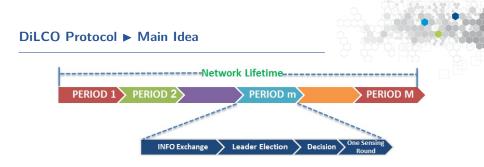
Coverage protocols in this dissertation :

The protocols presented in this dissertation combine between the two above approaches.

Presentation Outline



DiLCO Protocol > Assumptions and Network Model


- * Static Wireless Sensors.
- * Uniform deployment.
- * High density deployment.
- * Homogeneous in terms of :
 - Sensing, Communication, and Processing capabilities
- * Heterogeneous Energy.
- * Its $R_c \geq 2R_s$.
- * Multi-hop communication.
- * Know Its location by :
 - Embedded GPS or
 - Location Discovery Algorithm.

- * Using two kinds of packet :
 - INFO packet.
 - ActiveSleep packet.
- * Five status for each node :
 - LISTENING, ACTIVE, SLEEP, COMPUTATION, and COMMUNICATION.

Primary point coverage model

1. INFORMATION EXCHANGE :

Sensors exchanges through multi-hop communication, their :

- Position coordinates,
- current remaining energy,
- sensor node ID, and
- number of its one-hop live neighbors.

2. LEADER ELECTION :

The selection criteria are, in order of importance :

- larger number of neighbors,
- · larger remaining energy, and then in case of equality,
- larger ID.

3. **DECISION**:

Leader solves an integer program(see next slide) to :

- Select which sensors will be activated in the sensing phase.
- Send Active-Sleep packet to each sensor in the subregion.

4. SENSING :

Based on Active-Sleep Packet Information :

- Active sensors will execute their sensing task.
- Sleep sensors will wait a time equal to the period of sensing to wakeup.

DiLCO Protocol Coverage Problem Formulation

Our coverage optimization problem can then be formulated as follows :

$$\begin{cases} \min \sum_{p \in P} (w_{\theta}\Theta_{p} + w_{U}U_{p}) \\ \text{subject to :} \\ \sum_{j \in J} \alpha_{jp}X_{j} - \Theta_{p} + U_{p} = 1, \quad \forall p \in P \\ \Theta_{p} \in \mathbb{N}, \qquad \forall p \in P \\ U_{p} \in \{0, 1\}, \qquad \forall p \in P \\ X_{j} \in \{0, 1\}, \qquad \forall j \in J \end{cases}$$

- X_j : indicates whether or not the sensor j is actively sensing (1 if yes and 0 if not);
- Θ_p: overcoverage, the number of sensors minus one that are covering the primary point p;
- *U_p* : *undercoverage*, indicates whether or not the primary point *p* is being covered (1 if not covered and 0 if covered).

DiLCO Protocol DiLCO Protocol Algorithm

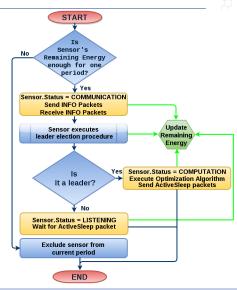
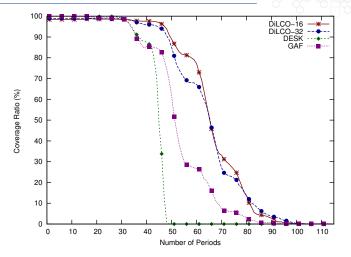


TABLE: Relevant parameters for network initializing.

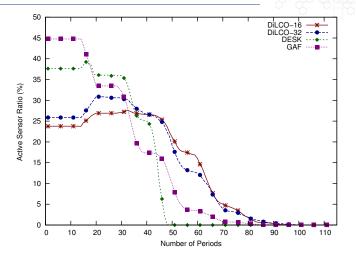
Parameter	Value			
Sensing Field	$(50 \times 25) m^2$			
Nodes Number	50, 100, 150, 200 and 250 nodes			
Initial Energy	500-700 joules			
Sensing Period	60 Minutes			
E_{th}	36 Joules			
R_s	5 m			
R_c	10 m			
W _Θ	1			
WU	$ P ^2$			
Modeling Language	A Mathematical Programming Language (AMPL)			
Optimization Solver	GNU linear Programming Kit (GLPK)			
Network Simulator	Discrete Event Simulator OMNeT++			

DiLCO Protocol Energy Model & Performance Metrics


Energy Consumption Model

Sensor status	MCU	Radio	Sensing	Power (mW)
LISTENING	On	On	On	20.05
ACTIVE	On	Off	On	9.72
SLEEP	Off	Off	Off	0.02
COMPUTATION	On	On	On	26.83
Energy needed to send or receive a 2-bit content message				0.515

Performance Metrics


- \mapsto Network Lifetime
- \mapsto Coverage Ratio (CR)
- \mapsto Energy Consumption
- → Number of Active Sensors Ratio (ASR)
- \mapsto Execution Time

 $\operatorname{Figure:}$ Coverage ratio for 150 deployed nodes

 $\operatorname{Figure:}$ Active sensors ratio for 150 deployed nodes

9. Q

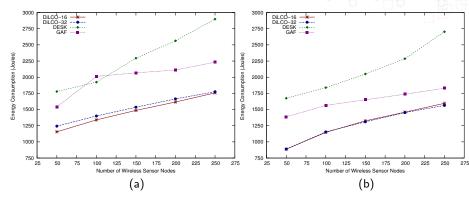
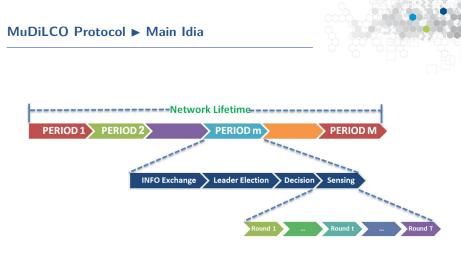


FIGURE: Energy consumption for (a) Lifetime₉₅ and (b) Lifetime₅₀


FIGURE: Network lifetime for (a) Lifetime₉₅ and (b) Lifetime₅₀

Presentation Outline

$\label{eq:Figure: MuDiLCO protocol.} Figure: MuDiLCO protocol.$

MuDiLCO Protocol
Multiround Coverage Problem Formulation

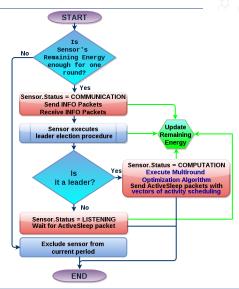
Our coverage optimization problem can then be formulated as follows

$$\min \sum_{t=1}^{T} \sum_{p=1}^{P} (W_{\theta} * \Theta_{t,p} + W_{U} * U_{t,p})$$

Subject to

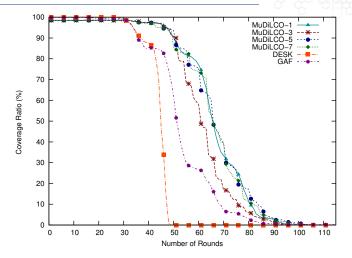
$$\sum_{j=1}^{|J|} \alpha_{j,p} * X_{t,j} = \Theta_{t,p} - U_{t,p} + 1 \qquad \forall p \in P, t = 1, \dots, T$$

$$\sum_{t=1}^{I} X_{t,j} \leq \lfloor RE_j/E_{th} \rfloor \qquad \forall j \in J, t = 1, \dots, T$$


 $X_{t,j} \in \{0,1\}, \qquad \forall j \in J, t = 1, \dots, T$

 $U_{t,p} \in \{0,1\}, \qquad \forall p \in P, t = 1, \dots, T$

 $\Theta_{t,p} \geq 0 \qquad \forall p \in P, t = 1, \dots, T$



MuDiLCO Protocol MuDiLCO Protocol Algorithm

MuDiLCO Protocol Results Analysis and Comparison

 $\operatorname{Figure:}$ Average coverage ratio for 150 deployed nodes

MuDiLCO Protocol Results Analysis and Comparison

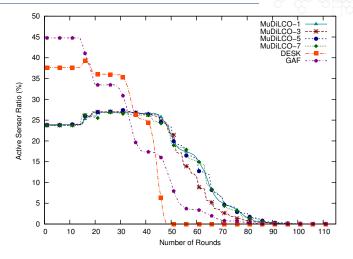


FIGURE: Active sensors ratio for 150 deployed nodes

MuDiLCO Protocol
Results Analysis and Comparison

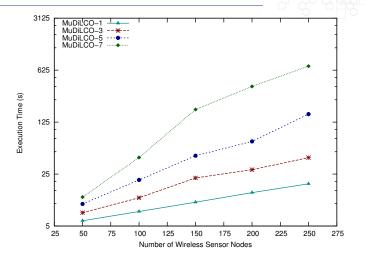


FIGURE: Execution Time (in seconds)

MuDiLCO Protocol Results Analysis and Comparison

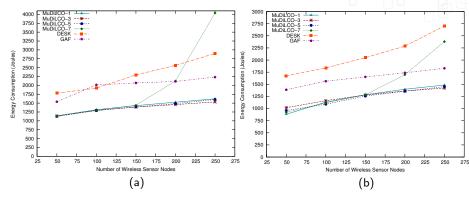


FIGURE: Energy consumption for (a) Lifetime₉₅ and (b) Lifetime₅₀

MuDiLCO Protocol Results Analysis and Comparison

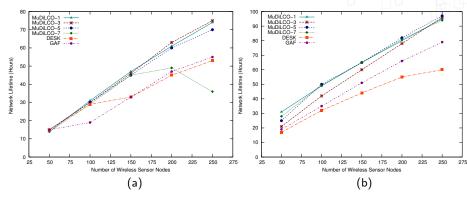


FIGURE: Network lifetime for (a) Lifetime₉₅ and (b) Lifetime₅₀

Presentation Outline

PeCO Protocol > Assumptions and Models

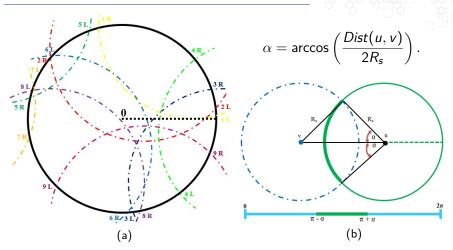
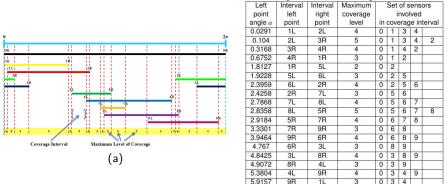
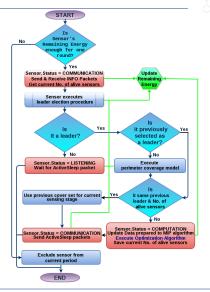



FIGURE: (a) Perimeter coverage of sensor node 0 and (b) finding the arc of u's perimeter covered by v.

PeCO Protocol ► Assumptions and Models

Table 6.1: Coverage intervals and contributing sensors for sensor node 0

(b)


0

4

FIGURE: (a) Maximum coverage levels for perimeter of sensor node 0. and (b) Coverage intervals and contributing sensors for sensor node 0.

PeCO Protocol PeCO Protocol Algorithm

PeCO Protocol ► Perimeter-based Coverage Problem Formulation

$$\text{Minimize } \sum_{j \in S} \sum_{i \in I_j} (\alpha_i^j \ M_i^j + \beta_i^j \ V_i^j)$$

Subject to :

$$\begin{split} \sum_{k \in A} (a_{ik}^j \ X_k) + M_i^j &\geq l \quad \forall i \in I_j, \forall j \in S \\ \sum_{k \in A} (a_{ik}^j \ X_k) - V_i^j &\leq l \quad \forall i \in I_j, \forall j \in S \\ X_k \in \{0, 1\}, \forall k \in A \\ M_i^j, V_i^j \in \mathbb{R}^+ \end{split}$$

S represents the set of sensor nodes;

 $A \subseteq S$ is the subset of alive sensors;

 I_j designates the set of coverage intervals (CI) obtained for sensor j;

 a_{ik}^j is indicator function of whether sensor k is involved in coverage interval i of sensor j;

 α_i^j and β_i^j are nonnegative weights;

l is the level of coverage required for one sensor;

 l^i the number of active sensors for covering the coverage interval i;

If the sensor j is undercovered $\Rightarrow M_i^j = l - l^i, V_i^j = 0;$

If the sensor j is overcovered $\Rightarrow M_i^j = 0, V_i^j = l^i - l.$

PeCO Protocol > **Performance Evaluation and Analysis**

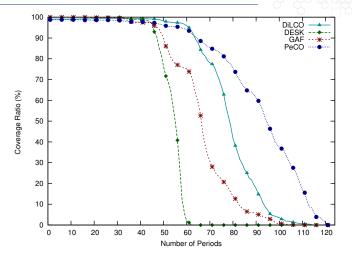


FIGURE: Coverage ratio for 200 deployed nodes.

PeCO Protocol > **Performance Evaluation and Analysis**

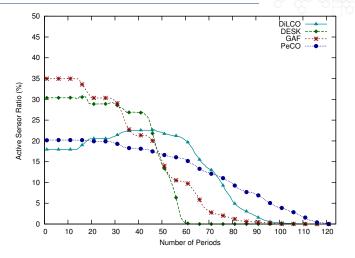


FIGURE: Active sensors ratio for 200 deployed nodes.

PeCO Protocol Performance Evaluation and Analysis

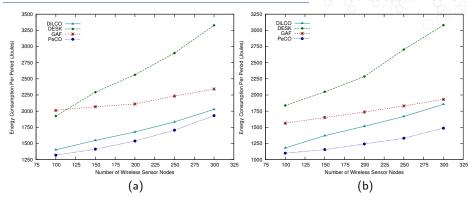


FIGURE: Energy consumption per period for (a) $Lifetime_{95}$ and (b) $Lifetime_{50}$.

PeCO Protocol Performance Evaluation and Analysis

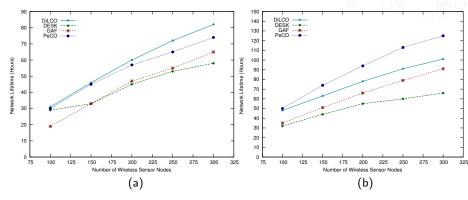


FIGURE: Network Lifetime for (a) Lifetime₉₅ and (b) Lifetime₅₀.

Presentation Outline

Conclusion

- Two-step approaches are proposed to optimize both coverage and lifetime performances, where :
 - Sensing field is divided into smaller subregions using divide-and-conquer method.
 - One of the proposed optimization protocols is applied in each subregion in a distributed parallel way.
- The proposed protocols (DiLCO, MuDiLCO, PeCO) combine two efficient mechanisms :
 - Network leader election, and
 - Sensor activity scheduling based optimization.
- Our protocols are periodic where each period consists of 4 phases :
 - Information exchange,
 - Network leader election,
 - Decision based optimization, and
 - Sensing.

- ► DiLCO and PeCO provide a schedule for one round per period.
- MuDiLCO provides a schedule for multiple rounds per period.
- Comparison results show that DiLCO, MuDiLCO, and PeCO protocols :
 - maintain the coverage for a larger number of rounds.
 - use less active nodes to save energy efficiently during sensing.
 - are more powerful against network disconnections.
 - perform the optimization with suitable execution times.
 - consume less energy.
 - prolong the network lifetime.

Perspectives

- ▶ The optimal number of subregions will be investigated.
- Design a heterogeneous integrated optimization protocol to integrate coverage, routing, and data aggregation protocols.
- Extend PeCO protocol so that the schedules are planned for multiple sensing periods.
- ▶ We plan to consider particle swarm optimization or evolutionary algorithms to obtain quickly near optimal solutions.
- Improve our mathematical models to take into account heterogeneous sensors from both energy and node characteristics point of views.
- The cluster head will be selected in a distributed way and based on local information.

Thank You for Your Attention !

Questions?

