+In a distributed algorithms, on the other hand, the decision process is localized in each individual sensor node, and the only information from neighboring nodes are used for the activity decision. Compared to centralized algorithms, distributed algorithms reduce the energy consumption required for radio communication and detection accuracy whilst increase the energy consumption for computation. Overall, distributed algorithms are more suitable for large-scale networks, but it can not give optimal (or near-optimal) solution based only on local information. Moreover, a recent study conducted in \cite{ref226} concludes that there is a threshold in terms of network size to switch from a distributed to a centralized algorithm. Table~\ref{Table0:ch2} shows a comparison between the centralized coverage algorithms and the distributed coverage algorithms.
+
+
+\begin{table}[h]
+\caption{Centralized Coverage Algorithms vs Distributed Coverage Algorithms}
+\begin{center}
+\begin{tabular}{ |p{3cm}|p{5cm}|p{5cm}|}
+\hline
+
+\textbf{\begin{center} Characteristics \end{center}} & \textbf{\begin{center} Centralized Coverage Algorithms \end{center}} & \textbf{\begin{center} Distributed Coverage Algorithms \end{center}}\\ \hline
+
+\textbf{\begin{center} Computation \end{center}} & Require low processing power where the algorithm is executed only in one elected node. & Require large processing power due to execution the algorithm in every node in WSN. \\ \hline
+
+\textbf{\begin{center} Communication \end{center}} & Require large power consumption for communication. & Require low power consumption for communication. \\ \hline
+
+\textbf{\begin{center} Decision \end{center}} & Ensure optimal (or near-optimal) solution. & Can not ensure optimal (or near-optimal) solution.\\ \hline
+
+\textbf{\begin{center} Redundancy \end{center}} & Provide less redundant active sensor nodes during monitoring the sensing field. & Provide more redundant active sensor nodes during monitoring the sensing field.\\ \hline
+
+\textbf{\begin{center} Energy Consumption \end{center}} & Energy consumption is large especially when the network size and/or density increase. & Energy consumption is low because they have lower communication cost. \\ \hline
+
+\textbf{\begin{center} Scalability \end{center}} & Scalable only with dividing the sensing field into smaller subregions. & More scalable for large networks. \\ \hline
+
+\textbf{\begin{center} Reliability \end{center}} & Less robust against sensor failure. & More robust against sensor failure. \\ \hline
+
+\end{tabular}
+\end{center}
+\label{Table0:ch2}
+\end{table}
+
+
+
+In this dissertation, the sensing field is divided into smaller subregions using divide-and-conquer method. The division continues until the distance between each two sensors inside the subregion is 3 or 2 hops maximum. This division have made our protocols more scalable for the large networks, less energy consumption for communication, less processing power for decision, more reliable against network failure, and a longer lifetime. Our proposed protocols are distributed on the sensor nodes of the subregions. The protocols in each subregion work in independent and simultaneous way with the protocols in the other subregions. If the network disconnected in one subregion, it will not effect on the other subregions of the sensing field. There is no a fixed sensor node in the subregion execute the optimization algorithm. Each period of the network lifetime, the sensor nodes in the subregion cooperate in order to select a sensor node according to a predefined priority metrics to execute the optimization algorithm. The local optimal schedule resulted from the optimization algorithm is applied within the subregion. The elected sensor node sends a packet to every sensor within the subregion to inform him to stay active or sleep during this period. Each optimization algorithm in a subregion provides locally optimal solution, so the solution for all the sensing field is near-optimal.
+
+Several algorithms to retain the coverage and maximize the network lifetime were proposed in~\cite{ref113,ref101,ref103,ref105}. Table~\ref{Table1:ch2} summarized the main characteristics of some coverage approaches in previous literatures.
+
+
+\section{Centralized Algorithms}
+\label{ch2:sec:02}
+The major idea of most centralized algorithms is to divide/organize the sensors into a suitable number of cover sets, where each set completely covers an interest region and to activate these cover sets successively. The centralized algorithms always provide optimal or near-optimal solution since the algorithm has a global view of the whole network. Energy-efficient centralized approaches differ according to several criteria \cite{ref113}, such as the coverage objective (target coverage or area coverage), the node deployment method (random or deterministic), and the heterogeneity of sensor nodes (common sensing range, common battery lifetime).