+The difference with MuDiLCO in that the elected leader in each subregion is for each period. In the decision phase, each leader will solve an integer program to select which cover sets will be activated in the following sensing phase to cover the subregion to which it belongs. The integer program will produce $T$ cover sets, one for each round. The leader will send an ActiveSleep packet to each sensor in the subregion based on the algorithm's results, indicating if the sensor should be active or not in
+each round of the sensing phase. Each sensing phase is itself divided into $T$ rounds and for each round a set of sensors (a cover set) is responsible for the sensing task.
+%Each sensor node in the subregion will receive an ActiveSleep packet from leader, informing it to stay awake or to go to sleep for each round of the sensing phase.
+Algorithm~\ref{alg:MuDiLCO}, which will be executed by each node at the beginning of a period, explains how the ActiveSleep packet is obtained. In this way, a multiround optimization process is performed during each
+period after Information~Exchange and Leader~Election phases, in order to produce $T$ cover sets that will take the mission of sensing for $T$ rounds. \textcolor{blue}{The flowchart of MuDiLCO protocol executed in each sensor node is presented in Figure \ref{flow5}.}
+
+\begin{figure}[ht!]
+\centering
+\includegraphics[scale=0.50]{Figures/ch5/Algo2.png} % 70mm
+\caption{The flowchart of MuDiLCO protocol.}
+\label{flow5}
+\end{figure}
+
+
+%This protocol minimizes the impact of unexpected node failure (not due to batteries running out of energy), because it works in periods. On the one hand, if a node failure is detected before making the decision, the node will not participate during this phase. On the other hand, if the node failure occurs after the decision, the sensing task of the network will be temporarily affected: only during the period of sensing until a new period starts.
+
+%The energy consumption and some other constraints can easily be taken into account since the sensors can update and then exchange their information (including their residual energy) at the beginning of each period. However, the pre-sensing phases (Information Exchange, Leader Election, and Decision) are energy consuming for some nodes, even when they do not join the network to monitor the area.
+
+
+