]> AND Private Git Repository - ThesisAli.git/blobdiff - CHAPITRE_04.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
Update with Ali
[ThesisAli.git] / CHAPITRE_04.tex
index edbf25982eabb9f137a46b431527f700f164cb1b..a692dc32d0b86eca3012833c7ff1af8bc26f599b 100644 (file)
@@ -342,7 +342,7 @@ The modeling language for Mathematical Programming (AMPL)~\cite{AMPL} is  employ
 
 \indent In this dissertation, we used an energy consumption model proposed by~\cite{DESK} and based on \cite{ref112} with slight  modifications.  The energy consumption for  sending/receiving the packets is added, whereas the  part related to the dynamic sensing range is removed because we consider a fixed sensing range.
 
-\indent For our energy consumption model, we refer to the sensor node Medusa~II which uses an Atmel's  AVR ATmega103L microcontroller~\cite{ref112}. The typical architecture  of a  sensor  is composed  of four  subsystems: the  MCU subsystem which is capable of computation, communication subsystem (radio) which is responsible  for transmitting/receiving messages, the  sensing subsystem that collects  data, and  the  power supply  which  powers the  complete sensor  node \cite{ref112}. Each  of the first three subsystems  can be turned on or  off depending on  the current status  of the sensor.   Energy consumption (expressed in  milliWatt per second) for  the different status of  the sensor is summarized in Table~\ref{table1}.
+\indent For our energy consumption model, we refer to the sensor node Medusa~II which uses an Atmel's  AVR ATmega103L microcontroller~\cite{ref112}. The typical architecture  of a  sensor  is composed  of four  subsystems: the  MCU subsystem which is capable of computation, communication subsystem (radio) which is responsible  for transmitting/receiving messages, the  sensing subsystem that collects  data, and  the  power supply  which  powers the  complete sensor  node \cite{ref112}. Each  of the first three subsystems  can be turned on or  off depending on  the current status  of the sensor.   Energy consumption (expressed in  milliWatt per second) for  the different status of  the sensor is summarized in Table~\ref{tab:EC}.
 
 \begin{table}[h]
 \centering
@@ -350,7 +350,7 @@ The modeling language for Mathematical Programming (AMPL)~\cite{AMPL} is  employ
 \label{tab:EC}
 \begin{tabular}{|l||cccc|}
   \hline
-  {\bf Sensor status} & MCU & Radio & Sensor & {\it Power (mW)} \\
+  {\bf Sensor status} & MCU & Radio & Sensing & {\it Power (mW)} \\
   \hline
   LISTENING & On & On & On & 20.05 \\
   ACTIVE & On & Off & On & 9.72 \\
@@ -504,7 +504,7 @@ As shown in Figures~\ref{Figures/ch4/R1/EC}(a) and~\ref{Figures/ch4/R1/EC}(b), D
 \item {{\bf Execution Time}}
 %\subsubsection{Execution Time}
 
-In this experiment, the execution time of the distributed optimization approach has been studied. Figure~\ref{Figures/ch4/R1/T} gives the average execution times in seconds for the decision phase (solving of the optimization problem) during one period. They are given for the different approaches and various numbers of sensors. The original execution time is computed as described in section \ref{ch4:sec:04:04}. \\ \\ \\ \\
+In this experiment, the execution time of the distributed optimization approach has been studied. Figure~\ref{Figures/ch4/R1/T} gives the average execution times in seconds for the decision phase (solving of the optimization problem) during one period. They are given for the different approaches and various numbers of sensors.  \\ \\% \\ \\ \\
 
 
 
@@ -515,7 +515,7 @@ In this experiment, the execution time of the distributed optimization approach
 \label{Figures/ch4/R1/T}
 \end{figure} 
 
-We can see from Figure~\ref{Figures/ch4/R1/T} that DiLCO-32 has very low execution times in comparison with other DiLCO versions because it is distributed on larger number of small subregions.  Conversely, DiLCO-2 requires to solve an optimization problem considering half the nodes in each subregion and thus presents high execution times. Overall, to be able to deal with very large networks,  a distributed method is clearly required.
+The original execution time is computed as described in section \ref{ch4:sec:04:04}. We can see from Figure~\ref{Figures/ch4/R1/T} that DiLCO-32 has very low execution times in comparison with other DiLCO versions because it is distributed on larger number of small subregions.  Conversely, DiLCO-2 requires to solve an optimization problem considering half the nodes in each subregion and thus presents high execution times. Overall, to be able to deal with very large networks,  a distributed method is clearly required.
 
 \item {{\bf Network Lifetime}}
 %\subsubsection{The Network Lifetime}