]> AND Private Git Repository - ThesisAli.git/blobdiff - CHAPITRE_05.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
Update with Ali
[ThesisAli.git] / CHAPITRE_05.tex
index 95ad64d4268e45b4dbbff75f9dc59800e81d0ea6..6604d953d889c5bd08ffff8c178cb9b6503d5559 100644 (file)
@@ -41,11 +41,6 @@ mechanisms: subdividing the area of interest into several subregions (like a clu
 
 As can be seen in Figure~\ref{fig2},  our protocol  works in  periods fashion, where  each is  divided  into 4  phases: Information~Exchange,  Leader~Election, Decision, and Sensing. 
 %The information exchange among wireless sensor nodes is described in chapter 4, section \ref{ch4:sec:02:03:01}. The leader election in each subregion is explained in chapter 4, section \ref{ch4:sec:02:03:02}, 
-The difference with MuDiLCO in that the elected leader in each subregion is for each period. In the decision phase, each leader will solve an integer  program to select which  cover sets  will be activated in  the following  sensing phase  to cover the  subregion to  which it belongs.  The integer  program will produce $T$ cover sets,  one for each round. The leader will send an ActiveSleep  packet to each sensor in the subregion based on the algorithm's results, indicating if the sensor should be active or not in
-each round  of the  sensing phase. Each sensing phase is itself divided into $T$ rounds and for each round a set of sensors (a cover set) is responsible for the sensing task. 
-%Each sensor node in the subregion will receive an ActiveSleep packet from leader, informing it to stay awake or to go to sleep for  each round of the sensing  phase. 
-Algorithm~\ref{alg:MuDiLCO}, which will be  executed by each node at the beginning  of a period, explains  how the ActiveSleep packet is obtained. In this way, a multiround optimization  process is performed  during each
-period  after  Information~Exchange  and  Leader~Election phases,  in  order to produce $T$ cover sets that will take the mission of sensing for $T$ rounds.
 \begin{figure}[ht!]
 \centering \includegraphics[width=160mm]{Figures/ch5/GeneralModel.jpg} % 70mm  Modelgeneral.pdf
 \caption{MuDiLCO protocol.}
@@ -53,12 +48,6 @@ period  after  Information~Exchange  and  Leader~Election phases,  in  order to
 \end{figure} 
 
 
-This protocol minimizes the impact of unexpected node failure (not due to batteries running out of energy), because it works in periods. On the one hand, if a node failure is detected before making the decision, the node will not participate during this phase. On the other hand, if the node failure occurs after the decision, the sensing  task of the network will be temporarily affected:  only during  the period of sensing until a new period starts.
-
-The  energy consumption  and some other constraints  can easily  be  taken into account since the  sensors  can  update and  then  exchange their  information (including their residual energy) at the beginning of each period.  However, the pre-sensing  phases (Information  Exchange, Leader  Election, and  Decision) are energy  consuming for some  nodes, even  when they  do not  join the  network to monitor the area.
-
-
 \begin{algorithm}[h!]                
  % \KwIn{all the parameters related to information exchange}
 %  \KwOut{$winer-node$ (: the id of the winner sensor node, which is the leader of current round)}
@@ -99,6 +88,19 @@ The  energy consumption  and some other constraints  can easily  be  taken into
 
 \end{algorithm}
 
+The difference with MuDiLCO in that the elected leader in each subregion is for each period. In the decision phase, each leader will solve an integer  program to select which  cover sets  will be activated in  the following  sensing phase  to cover the  subregion to  which it belongs.  The integer  program will produce $T$ cover sets,  one for each round. The leader will send an ActiveSleep  packet to each sensor in the subregion based on the algorithm's results, indicating if the sensor should be active or not in
+each round  of the  sensing phase. Each sensing phase is itself divided into $T$ rounds and for each round a set of sensors (a cover set) is responsible for the sensing task. 
+%Each sensor node in the subregion will receive an ActiveSleep packet from leader, informing it to stay awake or to go to sleep for  each round of the sensing  phase. 
+Algorithm~\ref{alg:MuDiLCO}, which will be  executed by each node at the beginning  of a period, explains  how the ActiveSleep packet is obtained. In this way, a multiround optimization  process is performed  during each
+period  after  Information~Exchange  and  Leader~Election phases,  in  order to produce $T$ cover sets that will take the mission of sensing for $T$ rounds.
+
+
+%This protocol minimizes the impact of unexpected node failure (not due to batteries running out of energy), because it works in periods. On the one hand, if a node failure is detected before making the decision, the node will not participate during this phase. On the other hand, if the node failure occurs after the decision, the sensing  task of the network will be temporarily affected:  only during  the period of sensing until a new period starts.
+
+%The  energy consumption  and some other constraints  can easily  be  taken into account since the  sensors  can  update and  then  exchange their  information (including their residual energy) at the beginning of each period.  However, the pre-sensing  phases (Information  Exchange, Leader  Election, and  Decision) are energy  consuming for some  nodes, even  when they  do not  join the  network to monitor the area.
+
+
 
 
 
@@ -106,16 +108,11 @@ The  energy consumption  and some other constraints  can easily  be  taken into
 \label{ch5:sec:03}
 
 
-According to Algorithm~\ref{alg:MuDiLCO}, the integer program is based on the model
-proposed by  \cite{ref156} with some modifications, where  the objective of our model is
-to find  a maximum number of non-disjoint cover sets. 
+%According to Algorithm~\ref{alg:MuDiLCO}, the integer program is based on the model proposed by  \cite{ref156} with some modifications, where  the objective of our model is to find  a maximum number of non-disjoint cover sets. 
 %To fulfill this  goal, the authors proposed an integer  program which forces undercoverage and overcoverage of  targets to  become minimal  at  the same  time.  They  use binary  variables $x_{jl}$ to indicate if  sensor $j$ belongs to cover set $l$. In our model, 
-We consider binary variables $X_{t,j}$ to determine the  possibility of activating
-sensor $j$ during round $t$ of  a given sensing phase.  We also consider primary
-points as targets.  The set of primary points is denoted by  $P$ and the set of
-sensors by  $J$. Only sensors  able to  be alive during  at least one  round are
-involved in the integer program.
+%We consider binary variables $X_{t,j}$ to determine the  possibility of activating sensor $j$ during round $t$ of  a given sensing phase.  We also consider primary points as targets.  The set of primary points is denoted by  $P$ and the set of sensors by  $J$. Only sensors  able to  be alive during  at least one  round are involved in the integer program.
 
+We extend the mathematical formulation given in section \ref{ch4:sec:03} to take into account multiple rounds.
 
 For a  primary point  $p$, let $\alpha_{j,p}$  denote the indicator  function of
 whether the point $p$ is covered, that is
@@ -200,22 +197,10 @@ U_{t,p} \in \lbrace0,1\rbrace, \hspace{10 mm}\forall p \in P, t = 1,\dots,T  \la
   covered).
 \end{itemize}
 
-The first group  of constraints indicates that some primary  point $p$ should be
-covered by at least  one sensor and, if it is not  always the case, overcoverage
-and undercoverage  variables help balancing the restriction  equations by taking
-positive values. The constraint  given by equation~(\ref{eq144}) guarantees that
-the sensor has enough energy ($RE_j$  corresponds to its remaining energy) to be
-alive during  the selected rounds knowing  that $E_{th}$ is the amount of energy
-required to be alive during one round.
+%The first group  of constraints indicates that some primary  point $p$ should be covered by at least  one sensor and, if it is not  always the case, overcoverage and undercoverage  variables help balancing the restriction  equations by taking positive values. 
+The constraint  given by equation~(\ref{eq144}) guarantees that the sensor has enough energy ($RE_j$  corresponds to its remaining energy) to be alive during  the selected rounds knowing  that $E_{th}$ is the amount of energy required to be alive during one round. 
 
-There  are two main  objectives.  First,  we limit  the overcoverage  of primary
-points in order to activate a  minimum number of sensors.  Second we prevent the
-absence  of  monitoring  on  some  parts  of the  subregion  by  minimizing  the
-undercoverage.  The weights  $W_\theta$ and $W_U$ must be  properly chosen so as
-to guarantee that the maximum number of points are covered during each round. 
-%% MS W_theta is smaller than W_u => problem with the following sentence
-In our simulations, priority is given  to the coverage by choosing $W_{U}$ very
-large compared to $W_{\theta}$.
+%There  are two main  objectives.  First,  we limit  the overcoverage  of primary points in order to activate a  minimum number of sensors.  Second we prevent the absence  of  monitoring  on  some  parts  of the  subregion  by  minimizing  the undercoverage.  The weights  $W_\theta$ and $W_U$ must be  properly chosen so as to guarantee that the maximum number of points are covered during each round.  In our simulations, priority is given  to the coverage by choosing $W_{U}$ very large compared to $W_{\theta}$.
 
 
  
@@ -327,9 +312,8 @@ rounds, and thus should extend the network lifetime.
 %\subsection{Active sensors ratio} 
 %\label{ch5:sec:03:02:02}
 
-It is crucial to have as few active nodes as possible in each round, in order to 
-minimize    the    communication    overhead    and   maximize    the    network
-lifetime. Figure~\ref{fig4}  presents the active  sensor ratio for  150 deployed
+%It is crucial to have as few active nodes as possible in each round, in order to  minimize    the    communication    overhead    and   maximize    the    network lifetime. 
+Figure~\ref{fig4}  presents the active  sensor ratio for  150 deployed
 nodes all along the network lifetime. It appears that up to round thirteen, DESK
 and GAF have  respectively 37.6\% and 44.8\% of nodes  in active mode, whereas
 MuDiLCO clearly  outperforms them  with only 23.7\%  of active nodes.  After the
@@ -348,7 +332,7 @@ Obviously, in  that case, DESK and GAF have fewer active nodes since they have a
 %\subsection{Stopped simulation runs}
 %\label{ch5:sec:03:02:03}
 
-Figure~\ref{fig6} reports the cumulative  percentage of stopped simulations runs per round for 150 deployed nodes. This figure gives the  breakpoint for each method.  \\ \\ \\ \\
+Figure~\ref{fig6} reports the cumulative  percentage of stopped simulations runs per round for 150 deployed nodes. This figure gives the  breakpoint for each method.  
 DESK stops first,  after approximately 45~rounds, because it consumes the more energy by  turning on a large number of redundant  nodes during the sensing phase. GAF  stops secondly for the  same reason than  DESK.  MuDiLCO overcomes DESK and GAF because the  optimization process distributed on several subregions leads  to coverage  preservation and  so extends  the network  lifetime.  Let us
 emphasize that the  simulation continues as long as a network  in a subregion is still connected. \\
 
@@ -360,7 +344,6 @@ emphasize that the  simulation continues as long as a network  in a subregion is
 \label{fig6}
 \end{figure} 
 
-
  
 \item {{\bf Energy consumption}} \label{subsec:EC} 
 %\subsection{Energy consumption} 
@@ -389,7 +372,7 @@ network sizes, for $Lifetime_{95}$ and $Lifetime_{50}$.
 
 The  results  show  that  MuDiLCO  is  the  most  competitive  from  the  energy consumption point of view.  The  other approaches have a high energy consumption due  to activating a  larger number  of redundant  nodes, as  well as  the energy consumed during  the different  status of the  sensor node. Among  the different versions of our protocol, the MuDiLCO-7  one consumes more energy than the other versions. This is  easy to understand since the bigger the  number of rounds and
 the number of  sensors involved in the integer program, the larger the time computation to solve the optimization problem. To improve the performances of MuDiLCO-7, we  should increase the  number of subregions  in order to  have fewer sensors to consider in the integer program.
-\\ \\ \\
+
 
 
  \item {{\bf Execution time}}
@@ -410,14 +393,15 @@ seconds (needed to solve optimization problem) for different values of $T$. The
 \end{figure} 
 
 As expected,  the execution time increases  with the number of  rounds $T$ taken into account to schedule the sensing phase. The times obtained for $T=1,3$ or $5$ seem bearable, but for $T=7$ they become quickly unsuitable for a sensor node, especially when  the sensor network size increases.   Again, we can notice that if we want  to schedule the nodes activities for a  large number of rounds,
-we need to choose a relevant number of subregions in order to avoid a complicated and cumbersome optimization.  On the one hand, a large value  for $T$ permits to reduce the  energy overhead due  to the three  pre-sensing phases, on  the other hand  a leader  node may  waste a  considerable amount  of energy  to  solve the optimization problem. \\
+we need to choose a relevant number of subregions in order to avoid a complicated and cumbersome optimization.  
 
+On the one hand, a large value  for $T$ permits to reduce the  energy overhead due  to the three  pre-sensing phases, on  the other hand  a leader  node may  waste a  considerable amount  of energy  to  solve the optimization problem. %\\ \\ \\ \\ \\ \\ \\
 
 \item {{\bf Network lifetime}}
 %\subsection{Network lifetime}
 %\label{ch5:sec:03:02:06}
 The next  two figures,  Figures~\ref{fig8}(a) and \ref{fig8}(b),  illustrate the network lifetime  for different network sizes,  respectively for $Lifetime_{95}$ and  $Lifetime_{50}$.  Both  figures show  that the  network  lifetime increases together with the  number of sensor nodes, whatever the  protocol, thanks to the node  density  which  results in  more  and  more  redundant  nodes that  can  be deactivated and thus save energy.  Compared to the other approaches, our MuDiLCO
-protocol  maximizes the  lifetime of  the network.   In particular,  the  gain in lifetime for a  coverage over 95\% is greater than 38\%  when switching from GAF to MuDiLCO-3. \\ \\ \\ 
+protocol  maximizes the  lifetime of  the network.   In particular,  the  gain in lifetime for a  coverage over 95\% is greater than 38\%  when switching from GAF to MuDiLCO-3.  
 
 \begin{figure}[h!]
 \centering
@@ -433,10 +417,11 @@ protocol  maximizes the  lifetime of  the network.   In particular,  the  gain i
 \end{figure}
 
 
-\end{enumerate} 
 The  slight decrease that can be observed  for MuDiLCO-7 in case of  $Lifetime_{95}$  with  large  wireless  sensor  networks  results  from  the difficulty  of the optimization  problem to  be solved  by the  integer program.
 This  point was  already noticed  in \ref{subsec:EC} devoted  to the
 energy consumption,  since network lifetime and energy  consumption are directly linked.
+\end{enumerate} 
+
 
 \section{Conclusion}
 \label{ch5:sec:05}