-Each sensor node $j$ sends its position, remaining energy $RE_j$, and the number
-of neighbors $NBR_j$ to all wireless sensor nodes in its subregion by using an
-INFO packet (containing information on position coordinates, current remaining
-energy, sensor node ID, number of its one-hop live neighbors) and then waits for
-packets sent by other nodes. After that, each node will have information about
-all the sensor nodes in the subregion. In our model, the remaining energy
-corresponds to the time that a sensor can live in the active mode.
+Each sensor node $j$ sends its position, remaining energy $RE_j$, and the number of neighbors $NBR_j$ to all sensor nodes in its subregion by using an INFO packet (containing information on position coordinates, current remaining energy, sensor node ID, number of its one-hop live neighbors) and then waits for packets sent by other nodes. After that, each node will have information about
+all the sensor nodes in the subregion. In our model, the remaining energy corresponds to the time that a sensor can live in the active mode.