\chapter{Perimeter-based Coverage Optimization to Improve Lifetime in Wireless Sensor Networks}
\label{ch6}
-\iffalse
-
-\section{Summary}
-\label{ch6:sec:01}
-
-The most important problem in a Wireless Sensor Network (WSN) is to optimize the
-use of its limited energy provision so that it can fulfill its monitoring task
-as long as possible. Among known available approaches that can be used to
-improve power management, lifetime coverage optimization provides activity
-scheduling which ensures sensing coverage while minimizing the energy cost. In
-this paper, we propose such an approach called Perimeter-based Coverage Optimization
-protocol (PeCO). It is a hybrid of centralized and distributed methods: the
-region of interest is first subdivided into subregions and our protocol is then
-distributed among sensor nodes in each subregion.
-The novelty of our approach lies essentially in the formulation of a new
-mathematical optimization model based on the perimeter coverage level to schedule
-sensors' activities. Extensive simulation experiments have been performed using
-OMNeT++, the discrete event simulator, to demonstrate that PeCO can
-offer longer lifetime coverage for WSNs in comparison with some other protocols.
-
-
-\fi
-
\section{Introduction}
\label{ch6:sec:01}
The values of $\alpha^j_i$ and $\beta^j_i$ have been chosen to ensure a good
network coverage and a longer WSN lifetime. We have given a higher priority to
-the undercoverage (by setting the $\alpha^j_i$ with a larger value than
+the undercoverage (by setting the $\alpha^j_i$ with a larger value than
$\beta^j_i$) so as to prevent the non-coverage for the interval~$i$ of the
sensor~$j$. On the other hand, we have assigned to
$\beta^j_i$ a value which is slightly lower so as to minimize the number of active sensor nodes which contribute