]> AND Private Git Repository - ThesisAli.git/blobdiff - CHAPITRE_06.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
Update by Ali
[ThesisAli.git] / CHAPITRE_06.tex
old mode 100755 (executable)
new mode 100644 (file)
index 31e696c..121ae35
@@ -7,29 +7,6 @@
 \chapter{Perimeter-based Coverage Optimization to Improve Lifetime in Wireless Sensor Networks}
 \label{ch6}
 
 \chapter{Perimeter-based Coverage Optimization to Improve Lifetime in Wireless Sensor Networks}
 \label{ch6}
 
-\iffalse
-
-\section{Summary}
-\label{ch6:sec:01}
-
-The most important problem in a Wireless Sensor Network (WSN) is to optimize the
-use of its limited energy provision so that it can fulfill its monitoring task
-as long as  possible. Among  known  available approaches  that can  be used  to
-improve  power  management,  lifetime coverage  optimization  provides  activity
-scheduling which ensures sensing coverage while minimizing the energy cost. In
-this paper,  we propose such an approach called Perimeter-based Coverage Optimization
-protocol (PeCO). It is a  hybrid of centralized and distributed methods: the
-region of interest is first subdivided into subregions and our protocol is then
-distributed among sensor nodes in each  subregion.
-The novelty of our approach lies essentially in the formulation of a new
-mathematical optimization  model based on the  perimeter coverage level  to schedule
-sensors' activities.  Extensive simulation experiments have been performed using
-OMNeT++, the  discrete event simulator, to  demonstrate that PeCO  can
-offer longer lifetime coverage for WSNs in comparison with some other protocols.
-
-
-\fi
-
 
 \section{Introduction}
 \label{ch6:sec:01}
 
 \section{Introduction}
 \label{ch6:sec:01}
@@ -109,7 +86,7 @@ obtained through  the formula: $$\alpha =  \arccos \left(\dfrac{Dist(u,v)}{2R_s}
 Every couple of intersection points is placed on the angular interval $[0,2\pi]$
 in  a  counterclockwise manner,  leading  to  a  partitioning of  the  interval.
 Figure~\ref{pcm2sensors}(a)  illustrates  the arcs  for  the  nine neighbors  of
 Every couple of intersection points is placed on the angular interval $[0,2\pi]$
 in  a  counterclockwise manner,  leading  to  a  partitioning of  the  interval.
 Figure~\ref{pcm2sensors}(a)  illustrates  the arcs  for  the  nine neighbors  of
-sensor $0$ and  Figure~\ref{expcm} gives the position of  the corresponding arcs
+sensor $0$ and  Figure~\ref{expcm} gives the position of the corresponding arcs
 in  the interval  $[0,2\pi]$. More  precisely, we  can see  that the  points are
 ordered according  to the  measures of  the angles  defined by  their respective
 positions. The intersection points are  then visited one after another, starting
 in  the interval  $[0,2\pi]$. More  precisely, we  can see  that the  points are
 ordered according  to the  measures of  the angles  defined by  their respective
 positions. The intersection points are  then visited one after another, starting
@@ -412,7 +389,7 @@ be active during at most 20 periods.
 
 The values  of $\alpha^j_i$ and  $\beta^j_i$ have been  chosen to ensure  a good
 network coverage and a longer WSN lifetime.  We have given a higher priority to
 
 The values  of $\alpha^j_i$ and  $\beta^j_i$ have been  chosen to ensure  a good
 network coverage and a longer WSN lifetime.  We have given a higher priority to
-the  undercoverage  (by  setting  the  $\alpha^j_i$ with  a  larger  value  than
+the undercoverage  (by  setting  the  $\alpha^j_i$ with  a  larger  value  than
 $\beta^j_i$)  so as  to prevent  the non-coverage  for the  interval~$i$ of  the
 sensor~$j$.  On the  other hand,  we have assigned to
 $\beta^j_i$ a value which is slightly lower so as to minimize the number of active sensor nodes which contribute
 $\beta^j_i$)  so as  to prevent  the non-coverage  for the  interval~$i$ of  the
 sensor~$j$.  On the  other hand,  we have assigned to
 $\beta^j_i$ a value which is slightly lower so as to minimize the number of active sensor nodes which contribute