%% CHAPTER 06 %%
%% %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-
-\chapter{Perimeter-based Coverage Optimization to Improve Lifetime in Wireless Sensor Networks}
+ \chapter{ Perimeter-based Coverage Optimization to Improve Lifetime in WSNs}
\label{ch6}
-\iffalse
-
-\section{Summary}
-\label{ch6:sec:01}
-
-The most important problem in a Wireless Sensor Network (WSN) is to optimize the
-use of its limited energy provision so that it can fulfill its monitoring task
-as long as possible. Among known available approaches that can be used to
-improve power management, lifetime coverage optimization provides activity
-scheduling which ensures sensing coverage while minimizing the energy cost. In
-this paper, we propose such an approach called Perimeter-based Coverage Optimization
-protocol (PeCO). It is a hybrid of centralized and distributed methods: the
-region of interest is first subdivided into subregions and our protocol is then
-distributed among sensor nodes in each subregion.
-The novelty of our approach lies essentially in the formulation of a new
-mathematical optimization model based on the perimeter coverage level to schedule
-sensors' activities. Extensive simulation experiments have been performed using
-OMNeT++, the discrete event simulator, to demonstrate that PeCO can
-offer longer lifetime coverage for WSNs in comparison with some other protocols.
-
-
-\fi
-
\section{Introduction}
\label{ch6:sec:01}
-The continuous progress in Micro Electro-Mechanical Systems (MEMS) and
-wireless communication hardware has given rise to the opportunity to use large
-networks of tiny sensors, called Wireless Sensor Networks (WSN)~\cite{ref1,ref223}, to fulfill monitoring tasks. The features of a WSN made it suitable for a wide
-range of application in areas such as business, environment, health, industry,
-military, and so on~\cite{ref4}. These large number of applications have led to different design, management, and operational challenges in WSNs. The challenges become harder with considering into account the main limited capabilities of the sensor nodes such memory, processing, battery life, bandwidth, and short radio ranges. One important feature that distinguish the WSN from the other types of wireless networks is the provision of the sensing capability for the sensor nodes \cite{ref224}.
+%The continuous progress in Micro Electro-Mechanical Systems (MEMS) and wireless communication hardware has given rise to the opportunity to use large networks of tiny sensors, called Wireless Sensor Networks (WSN)~\cite{ref1,ref223}, to fulfill monitoring tasks. The features of a WSN made it suitable for a wide range of application in areas such as business, environment, health, industry, military, and so on~\cite{ref4}. These large number of applications have led to different design, management, and operational challenges in WSNs. The challenges become harder with considering into account the main limited capabilities of the sensor nodes such memory, processing, battery life, bandwidth, and short radio ranges. One important feature that distinguish the WSN from the other types of wireless networks is the provision of the sensing capability for the sensor nodes \cite{ref224}.
-The sensor node consumes some energy both in performing the sensing task and in transmitting the sensed data to the sink. Therefore, it is required to activate as less number as possible of sensor nodes that can monitor the whole area of interest so as to reduce the data volume and extend the network lifetime. The sensing coverage is the most important task of the WSNs since sensing unit of the sensor node is responsible for measuring physical, chemical, or biological phenomena in the sensing field. The main challenge of any sensing coverage problem is to discover the redundant sensor node and turn off those nodes in WSN \cite{ref225}. The redundant sensor node is a node whose sensing area is covered by its active neighbors. In previous works, several approaches are used to find out the redundant node such as Voronoi diagram method, sponsored sector, crossing coverage, and perimeter coverage.
+%The sensor node consumes some energy both in performing the sensing task and in transmitting the sensed data to the sink. Therefore, it is required to activate as less number as possible of sensor nodes that can monitor the whole area of interest so as to reduce the data volume and extend the network lifetime. The sensing coverage is the most important task of the WSNs since sensing unit of the sensor node is responsible for measuring physical, chemical, or biological phenomena in the sensing field. The main challenge of any sensing coverage problem is to discover the redundant sensor node and turn off those nodes in WSN \cite{ref225}. The redundant sensor node is a node whose sensing area is covered by its active neighbors. In previous works, several approaches are used to find out the redundant node such as Voronoi diagram method, sponsored sector, crossing coverage, and perimeter coverage.
-In this chapter, we propose such an approach called Perimeter-based Coverage Optimization
-protocol (PeCO). The PeCO protocol merges between two energy efficient mechanisms, which are used the main advantages of the centralized and distributed approaches and avoids the most of their disadvantages. An energy-efficient activity scheduling mechanism based new optimization model is performed by each leader in the subregions. This optimization model is based on the perimeter coverage model in order to producing the optimal cover set of active sensors, which are taken the responsibility of sensing during the current period.
+In this chapter, we propose an approach called Perimeter-based Coverage Optimization
+protocol (PeCO).
+%The PeCO protocol merges between two energy efficient mechanisms, which are used the main advantages of the centralized and distributed approaches and avoids the most of their disadvantages. An energy-efficient activity scheduling mechanism based new optimization model is performed by each leader in the subregions.
+The framework is similar to the one described in section \ref{ch4:sec:02:03}. But in this approach, the optimization model is based on the perimeter coverage model in order to produce the optimal cover set of active sensors, which are taken the responsibility of sensing during the current period.
-The rest of the chapter is organized as follows. The next section is devoted to the PeCO protocol description and section~\ref{ch6:sec:03} focuses on the
-coverage model formulation which is used to schedule the activation of sensor
-nodes based on perimeter coverage model. Section~\ref{ch6:sec:04} presents simulations
-results and discusses the comparison with other approaches. Finally, concluding
-remarks are drawn in section~\ref{ch6:sec:05}.
+The rest of the chapter is organized as follows. The next section is devoted to the PeCO protocol description and section~\ref{ch6:sec:03} focuses on the coverage model formulation which is used to schedule the activation of sensor nodes. Section~\ref{ch6:sec:04} presents simulation results and discusses the comparison with other approaches. Finally, concluding remarks are drawn in section~\ref{ch6:sec:05}.
-\section{The PeCO Protocol Description}
+\section{Description of the PeCO Protocol}
\label{ch6:sec:02}
-\noindent In this section, we describe in details our Lifetime Coverage
-Optimization protocol. First we present the assumptions we made and the models
-we considered (in particular the perimeter coverage one), second we describe the
-background idea of our protocol, and third we give the outline of the algorithm
-executed by each node.
+%\noindent In this section, we describe in details our Lifetime Coverage Optimization protocol.
+First we present the assumptions we made and the models
+we considered (in particular the perimeter coverage one), second we describe the background idea of our protocol, and third we give the outline of the algorithm executed by each node.
\subsection{Assumptions and Models}
\label{ch6:sec:02:01}
-The PeCO protocol uses the same assumptions and network model that presented in chapter 4, section \ref{ch4:sec:02:01}.
-
-The PeCO protocol uses the same perimeter-coverage model as Huang and
-Tseng in~\cite{ref133}. It can be expressed as follows: a sensor is
-said to be a perimeter covered if all the points on its perimeter are covered by
-at least one sensor other than itself. They proved that a network area is
+The PeCO protocol uses the same assumptions and network model than both DiLCO and MuDiLCO protocols. All the hypotheses can be found in section \ref{ch4:sec:02:01}.
+The PeCO protocol uses the same perimeter-coverage model as Huang and Tseng in~\cite{ref133}. It can be expressed as follows: a sensor is said to be a perimeter covered if all the points on its perimeter are covered by at least one sensor other than itself. They proved that a network area is
$k$-covered if and only if each sensor in the network is $k$-perimeter-covered (perimeter covered by at least $k$ sensors).
-Figure~\ref{pcm2sensors}(a) shows the coverage of sensor node~$0$. On this
-figure, we can see that sensor~$0$ has nine neighbors and we have reported on
-its perimeter (the perimeter of the disk covered by the sensor) for each
-neighbor the two points resulting from intersection of the two sensing
-areas. These points are denoted for neighbor~$i$ by $iL$ and $iR$, respectively
-for left and right from neighbor point of view. The resulting couples of
-intersection points subdivide the perimeter of sensor~$0$ into portions called
+Figure~\ref{pcm2sensors}(a) shows the coverage of sensor node~$0$. On this figure, we can see that sensor~$0$ has nine neighbors and we have reported on
+its perimeter (the perimeter of the disk covered by the sensor) for each neighbor the two points resulting from intersection of the two sensing
+areas. These points are denoted for neighbor~$i$ by $iL$ and $iR$, respectively for left and right from neighbor point of view. The resulting couples of intersection points subdivide the perimeter of sensor~$0$ into portions called
arcs.
\begin{figure}[ht!]
\label{pcm2sensors}
\end{figure}
-Figure~\ref{pcm2sensors}(b) describes the geometric information used to find the
-locations of the left and right points of an arc on the perimeter of a sensor
-node~$u$ covered by a sensor node~$v$. Node~$v$ is supposed to be located on the
-west side of sensor~$u$, with the following respective coordinates in the
-sensing area~: $(v_x,v_y)$ and $(u_x,u_y)$. From the previous coordinates we can
-compute the euclidean distance between nodes~$u$ and $v$: $Dist(u,v)=\sqrt{\vert
- u_x - v_x \vert^2 + \vert u_y-v_y \vert^2}$, while the angle~$\alpha$ is
-obtained through the formula: $$\alpha = \arccos \left(\dfrac{Dist(u,v)}{2R_s}
+Figure~\ref{pcm2sensors}(b) describes the geometric information used to find the locations of the left and right points of an arc on the perimeter of a sensor node~$u$ covered by a sensor node~$v$. Node~$v$ is supposed to be located on the
+west side of sensor~$u$, with the following respective coordinates in the sensing area~: $(v_x,v_y)$ and $(u_x,u_y)$. From the previous coordinates we can compute the euclidean distance between nodes~$u$ and $v$: $Dist(u,v)=\sqrt{\vert
+ u_x - v_x \vert^2 + \vert u_y-v_y \vert^2}$, while the angle~$\alpha$ is obtained through the formula: $$\alpha = \arccos \left(\dfrac{Dist(u,v)}{2R_s}
\right).$$ The arc on the perimeter of~$u$ defined by the angular interval $[\pi
- \alpha,\pi + \alpha]$ is said to be perimeter-covered by sensor~$v$.
-Every couple of intersection points is placed on the angular interval $[0,2\pi]$
-in a counterclockwise manner, leading to a partitioning of the interval.
-Figure~\ref{pcm2sensors}(a) illustrates the arcs for the nine neighbors of
-sensor $0$ and Figure~\ref{expcm} gives the position of the corresponding arcs
-in the interval $[0,2\pi]$. More precisely, we can see that the points are
-ordered according to the measures of the angles defined by their respective
-positions. The intersection points are then visited one after another, starting
-from the first intersection point after point~zero, and the maximum level of
-coverage is determined for each interval defined by two successive points. The
-maximum level of coverage is equal to the number of overlapping arcs. For
-example,
-between~$5L$ and~$6L$ the maximum level of coverage is equal to $3$
-(the value is highlighted in yellow at the bottom of Figure~\ref{expcm}), which
-means that at most 2~neighbors can cover the perimeter in addition to node $0$.
-Table~\ref{my-label} summarizes for each coverage interval the maximum level of
-coverage and the sensor nodes covering the perimeter. The example discussed
+Every couple of intersection points is placed on the angular interval $[0,2\pi]$ in a counterclockwise manner, leading to a partitioning of the interval.
+Figure~\ref{pcm2sensors}(a) illustrates the arcs for the nine neighbors of sensor $0$ and Figure~\ref{expcm} gives the position of the corresponding arcs in the interval $[0,2\pi]$. More precisely, we can see that the points are
+ordered according to the measures of the angles defined by their respective positions. The intersection points are then visited one after another, starting from the first intersection point after point~zero, and the maximum level of coverage is determined for each interval defined by two successive points. The maximum level of coverage is equal to the number of overlapping arcs. For example,
+between~$5L$ and~$6L$ the maximum level of coverage is equal to $3$ (the value is highlighted in yellow at the bottom of Figure~\ref{expcm}), which means that at most 2~neighbors can cover the perimeter in addition to node $0$.
+Table~\ref{my-label} summarizes for each coverage interval the maximum level of coverage and the sensor nodes covering the perimeter. The example discussed
above is thus given by the sixth line of the table.
\end{figure}
-
-
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% This section deleted %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+\iffalse
\subsection{The Main Idea}
\label{ch6:sec:02:02}
\label{fig2}
\end{figure}
-
-
+\fi
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{PeCO Protocol Algorithm}
\label{ch6:sec:02:03}
\noindent The pseudocode implementing the protocol on a node is given below.
More precisely, Algorithm~\ref{alg:PeCO} gives a brief description of the
-protocol applied by a sensor node $s_k$ where $k$ is the node index in the WSN.
+protocol applied by a sensor node $s_j$ where $j$ is the node index in the WSN.
\begin{algorithm}[h!]
% \KwIn{all the parameters related to information exchange}
%\emph{Initialize the sensor node and determine it's position and subregion} \;
\If{ $RE_k \geq E_{th}$ }{
- \emph{$s_k.status$ = COMMUNICATION}\;
+ \emph{$s_j.status$ = COMMUNICATION}\;
\emph{Send $INFO()$ packet to other nodes in subregion}\;
\emph{Wait $INFO()$ packet from other nodes in subregion}\;
- \emph{Update K.CurrentSize}\;
+ \emph{Update A.CurrentSize}\;
\emph{LeaderID = Leader election}\;
- \If{$ s_k.ID = LeaderID $}{
- \emph{$s_k.status$ = COMPUTATION}\;
+ \If{$ s_j.ID = LeaderID $}{
+ \emph{$s_j.status$ = COMPUTATION}\;
- \If{$ s_k.ID $ is Not previously selected as a Leader }{
+ \If{$ s_j.ID $ is Not previously selected as a Leader }{
\emph{ Execute the perimeter coverage model}\;
% \emph{ Determine the segment points using perimeter coverage model}\;
}
- \If{$ (s_k.ID $ is the same Previous Leader) And (K.CurrentSize = K.PreviousSize)}{
+ \If{$ (s_j.ID $ is the same Previous Leader) And (A.CurrentSize = A.PreviousSize)}{
\emph{ Use the same previous cover set for current sensing stage}\;
}
\Else{
\emph{Update $a^j_{ik}$; prepare data for IP~Algorithm}\;
- \emph{$\left\{\left(X_{1},\dots,X_{l},\dots,X_{K}\right)\right\}$ = Execute Integer Program Algorithm($K$)}\;
- \emph{K.PreviousSize = K.CurrentSize}\;
+ \emph{$\left\{\left(X_{1},\dots,X_{k},\dots,X_{A}\right)\right\}$ = Execute Integer Program Algorithm($A$)}\;
+ \emph{A.PreviousSize = A.CurrentSize}\;
}
- \emph{$s_k.status$ = COMMUNICATION}\;
- \emph{Send $ActiveSleep()$ to each node $l$ in subregion}\;
- \emph{Update $RE_k $}\;
+ \emph{$s_j.status$ = COMMUNICATION}\;
+ \emph{Send $ActiveSleep()$ to each node $k$ in subregion}\;
+ \emph{Update $RE_j $}\;
}
\Else{
- \emph{$s_k.status$ = LISTENING}\;
+ \emph{$s_j.status$ = LISTENING}\;
\emph{Wait $ActiveSleep()$ packet from the Leader}\;
- \emph{Update $RE_k $}\;
+ \emph{Update $RE_j $}\;
}
}
- \Else { Exclude $s_k$ from entering in the current sensing stage}
-\caption{PeCO($s_k$)}
+ \Else { Exclude $s_j$ from entering in the current sensing stage}
+\caption{PeCO($s_j$)}
\label{alg:PeCO}
\end{algorithm}
-In this algorithm, K.CurrentSize and K.PreviousSize respectively represent the
+In this algorithm, A.CurrentSize and A.PreviousSize respectively represent the
current number and the previous number of living nodes in the subnetwork of the
-subregion. Initially, the sensor node checks its remaining energy $RE_k$, which
+subregion. Initially, the sensor node checks its remaining energy $RE_j$, which
must be greater than a threshold $E_{th}$ in order to participate in the current
period. Each sensor node determines its position and its subregion using an
embedded GPS or a location discovery algorithm. After that, all the sensors
First, we have the following sets:
\begin{itemize}
-\item $S$ represents the set of WSN sensor nodes;
-\item $A \subseteq S $ is the subset of alive sensors;
+\item $J$ represents the set of sensor nodes;
+\item $A \subseteq J $ is the subset of alive sensors;
\item $I_j$ designates the set of coverage intervals (CI) obtained for
- sensor~$j$.
+ sensor~$j$, which have been defined according to the method introduced in section~\ref{ch6:sec:02:01}.
\end{itemize}
-$I_j$ refers to the set of coverage intervals which have been defined according
-to the method introduced in subsection~\ref{ch6:sec:02:01}. For a coverage interval $i$,
-let $a^j_{ik}$ denotes the indicator function of whether sensor~$k$ is involved
+First, for a coverage interval $i$, let $a^j_{ik}$ denotes the indicator function of whether sensor~$k$ is involved
in coverage interval~$i$ of sensor~$j$, that is:
\begin{equation}
a^j_{ik} = \left \{
\begin{equation} %\label{eq:ip2r}
\left \{
\begin{array}{ll}
-\min \sum_{j \in S} \sum_{i \in I_j} (\alpha^j_i ~ M^j_i + \beta^j_i ~ V^j_i )&\\
+\min \sum_{j \in J} \sum_{i \in I_j} (\alpha^j_i ~ M^j_i + \beta^j_i ~ V^j_i )&\\
\textrm{subject to :}&\\
-\sum_{k \in A} ( a^j_{ik} ~ X_{k}) + M^j_i \geq l \quad \forall i \in I_j, \forall j \in S\\
+\sum_{k \in A} ( a^j_{ik} ~ X_{k}) + M^j_i \geq l \quad \forall i \in I_j, \forall j \in J\\
%\label{c1}
-\sum_{k \in A} ( a^j_{ik} ~ X_{k}) - V^j_i \leq l \quad \forall i \in I_j, \forall j \in S\\
+\sum_{k \in A} ( a^j_{ik} ~ X_{k}) - V^j_i \leq l \quad \forall i \in I_j, \forall j \in J\\
% \label{c2}
% \Theta_{p}\in \mathbb{N}, &\forall p \in P\\
% U_{p} \in \{0,1\}, &\forall p \in P\\
\subsection{Simulation Settings}
\label{ch6:sec:04:01}
-The WSN area of interest is supposed to be divided into 16~regular subregions. %and we use the same energy consumption than in our previous work~\cite{Idrees2}.
-Table~\ref{table3} gives the chosen parameters settings.
-
-\begin{table}[ht]
-\caption{Relevant parameters for network initialization.}
-% title of Table
-\centering
-% used for centering table
-\begin{tabular}{c|c}
-% centered columns (4 columns)
-\hline
-Parameter & Value \\ [0.5ex]
-
-\hline
-% inserts single horizontal line
-Sensing field & $(50 \times 25)~m^2 $ \\
-
-WSN size & 100, 150, 200, 250, and 300~nodes \\
-%\hline
-Initial energy & in range 500-700~Joules \\
+The WSN area of interest is supposed to be divided into 16~regular subregions. The simulation parameters are summarized in Table~\ref{tablech4}.
+%Table~\ref{table3} gives the chosen parameters settings.
+%\begin{table}[ht]
+%\caption{Relevant parameters for network initialization.}
+%\centering
+%\begin{tabular}{c|c}
%\hline
-Sensing period & duration of 60 minutes \\
-$E_{th}$ & 36~Joules\\
-$R_s$ & 5~m \\
+%Parameter & Value \\ [0.5ex]
%\hline
-$\alpha^j_i$ & 0.6 \\
-% [1ex] adds vertical space
-%\hline
-$\beta^j_i$ & 0.4
-%inserts single line
+%Sensing field & $(50 \times 25)~m^2 $ \\
+%WSN size & 100, 150, 200, 250, and 300~nodes \\
+%Initial energy & in range 500-700~Joules \\
+%Sensing period & duration of 60 minutes \\
+%$E_{th}$ & 36~Joules\\
+%$R_s$ & 5~m \\
+%$\alpha^j_i$ & 0.6 \\
+%$\beta^j_i$ & 0.4
+%\end{tabular}
+%\label{table3}
+%\end{table}
+To obtain experimental results which are relevant, simulations with five different node densities going from 100 to 300~nodes were performed considering each time 25~randomly generated networks. The nodes are deployed on a field of
+interest of $(50 \times 25)~m^2 $ in such a way that they cover the field with a high coverage ratio.
+%Each node has an initial energy level, in Joules, which is randomly drawn in the interval $[500-700]$. If its energy provision reaches a value below the threshold $E_{th}=36$~Joules, the minimum energy needed for a node to stay active during one period, it will no more participate in the coverage task. This value corresponds to the energy needed by the sensing phase, obtained by multiplying the energy consumed in active state (9.72 mW) with the time in seconds for one period (3600 seconds), and adding the energy for the pre-sensing phases. According to the interval of initial energy, a sensor may be active during at most 20 periods.
+
+
+The values of $\alpha^j_i$ and $\beta^j_i$ have been chosen to ensure a good network coverage and a longer WSN lifetime as shown in Table \ref{my-beta-alfa}. We set the values of $\alpha^j_i$ and $\beta^j_i$ to 0.6 and 0.4 respectively. We have given a higher priority to the undercoverage (by setting the $\alpha^j_i$ with a larger value than $\beta^j_i$) so as to prevent the non-coverage for the interval~$i$ of the sensor~$j$. On the other hand, we have assigned to
+$\beta^j_i$ a value which is slightly lower so as to minimize the number of active sensor nodes which contribute in covering the interval.
+
+\begin{table}[h]
+\centering
+\caption{The impact of $\alpha^j_i$ and $\beta^j_i$ on PeCO's performance for 200 deployed nodes}
+\label{my-beta-alfa}
+\begin{tabular}{|c|c|c|c|}
+\hline
+$\alpha^j_i$ & $\beta^j_i$ & $Lifetime_{50}$ & $Lifetime_{95}$ \\ \hline
+0.0 & 1.0 & 151 & 0 \\ \hline
+0.1 & 0.9 & 145 & 0 \\ \hline
+0.2 & 0.8 & 140 & 0 \\ \hline
+0.3 & 0.7 & 134 & 0 \\ \hline
+0.4 & 0.6 & 125 & 0 \\ \hline
+0.5 & 0.5 & 118 & 30 \\ \hline
+0.6 & 0.4 & 94 & 57 \\ \hline
+0.7 & 0.3 & 97 & 49 \\ \hline
+0.8 & 0.2 & 90 & 52 \\ \hline
+0.9 & 0.1 & 77 & 50 \\ \hline
+1.0 & 0.0 & 60 & 44 \\ \hline
\end{tabular}
-\label{table3}
-% is used to refer this table in the text
\end{table}
-
-To obtain experimental results which are relevant, simulations with five
-different node densities going from 100 to 300~nodes were performed considering
-each time 25~randomly generated networks. The nodes are deployed on a field of
-interest of $(50 \times 25)~m^2 $ in such a way that they cover the field with a
-high coverage ratio. Each node has an initial energy level, in Joules, which is
-randomly drawn in the interval $[500-700]$. If its energy provision reaches a
-value below the threshold $E_{th}=36$~Joules, the minimum energy needed for a
-node to stay active during one period, it will no more participate in the
-coverage task. This value corresponds to the energy needed by the sensing phase,
-obtained by multiplying the energy consumed in active state (9.72 mW) with the
-time in seconds for one period (3600 seconds), and adding the energy for the
-pre-sensing phases. According to the interval of initial energy, a sensor may
-be active during at most 20 periods.
-
-
-The values of $\alpha^j_i$ and $\beta^j_i$ have been chosen to ensure a good
-network coverage and a longer WSN lifetime. We have given a higher priority to
-the undercoverage (by setting the $\alpha^j_i$ with a larger value than
-$\beta^j_i$) so as to prevent the non-coverage for the interval~$i$ of the
-sensor~$j$. On the other hand, we have assigned to
-$\beta^j_i$ a value which is slightly lower so as to minimize the number of active sensor nodes which contribute
-in covering the interval.
-
-We applied the performance metrics, which are described in chapter 4, section \ref{ch4:sec:04:04} in order to evaluate the efficiency of our approach. We used the modeling language and the optimization solver which are mentioned in chapter 4, section \ref{ch4:sec:04:02}. In addition, we employed an energy consumption model, which is presented in chapter 4, section \ref{ch4:sec:04:03}.
+With the performance metrics, described in section \ref{ch4:sec:04:04}, we evaluate the efficiency of our approach. We use the modeling language and the optimization solver which are mentioned in section \ref{ch4:sec:04:02}. In addition, we use the same energy consumption model, as previously, described in section \ref{ch4:sec:04:03}.
\subsection{Simulation Results}
\label{ch6:sec:04:02}
-In order to assess and analyze the performance of our protocol we have implemented PeCO protocol in OMNeT++~\cite{ref158} simulator. Besides PeCO, three other protocols, described in the next paragraph, will be evaluated for comparison purposes.
+In order to assess and analyze the performance of our protocol we have implemented PeCO protocol in OMNeT++~\cite{ref158} simulator.
+%Besides PeCO, three other protocols, described in the next paragraph, will be evaluated for comparison purposes.
%The simulations were run on a laptop DELL with an Intel Core~i3~2370~M (2.4~GHz) processor (2 cores) whose MIPS (Million Instructions Per Second) rate is equal to 35330. To be consistent with the use of a sensor node based on Atmels AVR ATmega103L microcontroller (6~MHz) having a MIPS rate equal to 6, the original execution time on the laptop is multiplied by 2944.2 $\left(\frac{35330}{2} \times \frac{1}{6} \right)$. The modeling language for Mathematical Programming (AMPL)~\cite{AMPL} is employed to generate the integer program instance in a standard format, which is then read and solved by the optimization solver GLPK (GNU linear Programming Kit available in the public domain) \cite{glpk} through a Branch-and-Bound method.
-As said previously, the PeCO is compared with three other approaches. The first one, called DESK, is a fully distributed coverage algorithm proposed by \cite{DESK}. The second one, called GAF~\cite{GAF}, consists in dividing the monitoring area into fixed squares. Then, during the decision phase, in each square, one sensor is chosen to remain active during the sensing phase. The last one, the DiLCO protocol~\cite{Idrees2}, is an improved version of a research work we presented in~\cite{ref159}. Let us notice that PeCO and DiLCO protocols are based on the same framework. In particular, the choice for the simulations of a partitioning in 16~subregions was chosen because it corresponds to the configuration producing the better results for DiLCO. The protocols are distinguished from one another by the formulation of the integer program providing the set of sensors which have to be activated in each sensing phase. DiLCO protocol tries to satisfy the coverage of a set of primary points, whereas PeCO protocol objective is to reach a desired level of coverage for each sensor perimeter. In our experimentations, we chose a level of coverage equal to one ($l=1$).
+PeCO protocol is compared with three other approaches. DESK \cite{DESK}, GAF~\cite{GAF}, and DiLCO~\cite{Idrees2} is an improved version of a research work we presented in~\cite{ref159}, where DiLCO protocol is described in chapter 4. Let us notice that PeCO and DiLCO protocols are based on the same framework. In particular, the choice for the simulations of a partitioning in 16~subregions was chosen because it corresponds to the configuration producing the better results for DiLCO. The protocols are distinguished from one another by the formulation of the integer program providing the set of sensors which have to be activated in each sensing phase. DiLCO protocol tries to satisfy the coverage of a set of primary points, whereas PeCO protocol objective is to reach a desired level of coverage for each sensor perimeter. In our experimentations, we chose a level of coverage equal to one ($l=1$).
\subsubsection{Coverage Ratio}
\label{ch6:sec:04:02:01}
-Figure~\ref{fig333} shows the average coverage ratio for 200 deployed nodes
-obtained with the four protocols. DESK, GAF, and DiLCO provide a slightly better
+Figure~\ref{fig333} shows the average coverage ratio for 200 deployed nodes obtained with the four protocols. DESK, GAF, and DiLCO provide a slightly better
coverage ratio with respectively 99.99\%, 99.91\%, and 99.02\%, compared to the 98.76\%
produced by PeCO for the first periods. This is due to the fact that at the
beginning the DiLCO protocol puts to sleep status more redundant sensors (which
\label{fig444}
\end{figure}
-\subsubsection{The Energy Consumption}
+\subsubsection{Energy Consumption}
\label{ch6:sec:04:02:03}
We studied the effect of the energy consumed by the WSN during the communication,
illustrate the energy consumption for different network sizes and for
$Lifetime95$ and $Lifetime50$. The results show that our PeCO protocol is the
most competitive from the energy consumption point of view. As shown in both
-figures, PeCO consumes much less energy than the three other methods. One might
-think that the resolution of the integer program is too costly in energy, but
-the results show that it is very beneficial to lose a bit of time in the
-selection of sensors to activate. Indeed the optimization program allows to
-reduce significantly the number of active sensors and so the energy consumption
-while keeping a good coverage level.
+figures, PeCO consumes much less energy than the three other methods. \\ \\ \\ \\ \\ \\
+
+One might think that the resolution of the integer program is too costly in energy, but the results show that it is very beneficial to lose a bit of time in the selection of sensors to activate. Indeed the optimization program allows to reduce significantly the number of active sensors and so the energy consumption while keeping a good coverage level.
\begin{figure}[h!]
\centering
-\subsubsection{The Network Lifetime}
+\subsubsection{Network Lifetime}
\label{ch6:sec:04:02:04}
-We observe the superiority of PeCO and DiLCO protocols in comparison with the
-two other approaches in prolonging the network lifetime. In
-Figures~\ref{fig3LT}(a) and (b), $Lifetime95$ and $Lifetime50$ are shown for
-different network sizes. As highlighted by these figures, the lifetime
-increases with the size of the network, and it is clearly largest for DiLCO
-and PeCO protocols. For instance, for a network of 300~sensors and coverage
-ratio greater than 50\%, we can see on Figure~\ref{fig3LT}(b) that the lifetime
-is about twice longer with PeCO compared to DESK protocol. The performance
-difference is more obvious in Figure~\ref{fig3LT}(b) than in
-Figure~\ref{fig3LT}(a) because the gain induced by our protocols increases with
- time, and the lifetime with a coverage of 50\% is far longer than with
-95\%.
+We observe the superiority of PeCO and DiLCO protocols in comparison with the two other approaches in prolonging the network lifetime. In
+Figures~\ref{fig3LT}(a) and (b), $Lifetime95$ and $Lifetime50$ are shown for different network sizes. As highlighted by these figures, the lifetime increases with the size of the network, and it is clearly largest for DiLCO and PeCO protocols. For instance, for a network of 300~sensors and coverage ratio greater than 50\%, we can see on Figure~\ref{fig3LT}(b) that the lifetime is about twice longer with PeCO compared to DESK protocol. The performance difference is more obvious in Figure~\ref{fig3LT}(b) than in Figure~\ref{fig3LT}(a) because the gain induced by our protocols increases with time, and the lifetime with a coverage of 50\% is far longer than with
+95\%.
-\begin{figure}[h!]
+\begin{figure} [p]
\centering
\begin{tabular}{@{}cr@{}}
\includegraphics[scale=0.8]{Figures/ch6/R/LT95.eps} & \raisebox{4cm}{(a)} \\
size. DiLCO is better for coverage ratios near 100\%, but in that case PeCO is
not ineffective for the smallest network sizes.
-\begin{figure}[h!]
+\begin{figure} [p]
\centering \includegraphics[scale=0.8]{Figures/ch6/R/LTa.eps}
\caption{Network lifetime for different coverage ratios.}
\label{figLTALL}
-\end{figure}
-
+\end{figure}
-\section{Conclusion}
+ %\FloatBarrier
+\section{Conclusion}
\label{ch6:sec:05}
In this chapter, we have studied the problem of Perimeter-based Coverage Optimization in