+\end{enumerate}
+
+\subsection{Performance Comparison with other Approaches}
+\label{ch4:sec:04:07}
+
+Based on the results, conducted in the previous subsections, \ref{ch4:sec:04:02} and \ref{ch4:sec:04:03}, DiLCO-16 and DiLCO-32 protocols, both with Model-5, seem to be the best candidates to be compared with other approaches. The first approach is called DESK~\cite{DESK}, which is a fully distributed coverage algorithm. The second approach called GAF~\cite{GAF}, consists in dividing the region into fixed squares. During the decision phase, in each square, one sensor is chosen to remain active during the sensing phase time. \\ \\
+
+\begin{enumerate}[i)]
+\item {{\bf Coverage Ratio}}
+%\subsubsection{Coverage Ratio}
+
+The average coverage ratio for 150 deployed nodes is demonstrated in Figure~\ref{Figures/ch4/R3/CR}.
+
+\parskip 0pt
+\begin{figure}[h!]
+\centering
+ \includegraphics[scale=0.8] {Figures/ch4/R3/CR.eps}
+\caption{Coverage ratio for 150 deployed nodes}
+\label{Figures/ch4/R3/CR}
+\end{figure}
+
+DESK and GAF provide a little better coverage ratio with 99.99\% and 99.91\% against 98.4\% and 98.9\% produced by DiLCO-16 and DiLCO-32 for the lowest number of periods. This is due to the fact that DiLCO protocol versions put in sleep mode redundant sensors thanks to the optimization (which lightly decreases the coverage ratio), while there are more active nodes in the case of DESK and GAF.
+
+Moreover, when the number of periods increases, coverage ratio produced by DESK and GAF protocols decreases.
+%This is due to dead nodes. However, DiLCO-16 protocol and DiLCO-32 protocol maintain almost a good coverage.
+GAF exhibits in particular a fast decrease. Our protocols also provide decreasing coverage ratio, but far more better than those of DESK and GAF. DiLCO-16 and DiLCO-32 clearly outperform DESK and GAF for number of periods between 32 and 103.
+This is because they optimize the coverage and the lifetime in wireless sensor network by selecting the best representative sensor nodes to take the responsibility of coverage during the sensing phase.
+%, and this will lead to continuing for a larger number of periods and prolonging the network lifetime. Furthermore, although some nodes are dead, sensor activity scheduling of our protocol chooses other nodes to ensure the coverage of the area of interest.
+
+\item {{\bf Active Sensors Ratio}}
+%\subsubsection{Active Sensors Ratio}
+
+It is important to have as few active nodes as possible in each period, in order to minimize the energy consumption and maximize the network lifetime. Figure~\ref{Figures/ch4/R3/ASR} shows the average active nodes ratio for 150 deployed nodes.
+
+\begin{figure}[h!]
+\centering
+\includegraphics[scale=0.8]{Figures/ch4/R3/ASR.eps}
+\caption{Active sensors ratio for 150 deployed nodes }
+\label{Figures/ch4/R3/ASR}
+\end{figure}
+
+The results presented in Figure~\ref{Figures/ch4/R3/ASR} show the superiority of the proposed DiLCO-16 protocol and DiLCO-32 protocol, in comparison with the other approaches. DESK and GAF have, respectively, 37.5 \% and 44.5 \% active nodes, whereas DiLCO-16 and DiLCO-32 protocols compete perfectly with only 23.7 \% and 25.8 \% active nodes for the first 14 periods. Then as the number of periods increases DiLCO-16 and DiLCO-32 protocols have larger number of active nodes in comparison with DESK and GAF, especially from period $35^{th}$ because they give a better coverage ratio than other approaches. We see that DESK and GAF have less number of active nodes beginning at the periods $35^{th}$ and $32^{th}$ because there are many dead nodes due to the high energy consumption by the redundant nodes during the previous sensing phases. \\
+
+
+\item {{\bf Stopped simulation runs}}
+%\subsubsection{The percentage of stopped simulation runs}
+%The results presented in this experiment, are to show the comparison of DiLCO-16 protocol and DiLCO-32 protocol with other two approaches from the point of view of stopped simulation runs per period.
+
+Figure~\ref{Figures/ch4/R3/SR} illustrates the percentage of stopped simulation runs per period for 150 deployed nodes.
+\begin{figure}[h!]
+\centering
+\includegraphics[scale=0.8]{Figures/ch4/R3/SR.eps}
+\caption{Percentage of stopped simulation runs for 150 deployed nodes }
+\label{Figures/ch4/R3/SR}
+\end{figure}
+On the one hand, DESK is the approach which stops first because it consumes more energy for communication as well as it turns on a large number of redundant nodes during the sensing phase. On the other hand, DiLCO-16 protocol and DiLCO-32 protocol have less stopped simulation runs in comparison with DESK and GAF because they distribute the optimization on several subregions.
+% in order to optimize the coverage and the lifetime of the network by activating a less number of nodes during the sensing phase leading to extending the network lifetime and coverage preservation. The optimization effectively continues as long as a network in a subregion is still connected.
+
+
+\item {{\bf Energy Consumption}}
+%\subsubsection{The Energy Consumption}
+%In this experiment, we have studied the effect of the energy consumed by the wireless sensor network during the communication, computation, listening, active, and sleep modes for different network densities and compare it with other approaches.
+
+Figures~\ref{Figures/ch4/R3/EC95} and ~\ref{Figures/ch4/R3/EC50} illustrate the energy consumption for different network sizes for $Lifetime_{95}$ and $Lifetime_{50}$.
+
+\begin{figure}[h!]
+\centering
+\includegraphics[scale=0.8]{Figures/ch4/R3/EC95.eps}
+\caption{Energy Consumption with $Lifetime_{95}$}
+\label{Figures/ch4/R3/EC95}
+\end{figure}
+
+\begin{figure}[h!]
+\centering
+\includegraphics[scale=0.8]{Figures/ch4/R3/EC50.eps}
+\caption{Energy Consumption with $Lifetime_{50}$}
+\label{Figures/ch4/R3/EC50}
+\end{figure}
+
+DiLCO-16 protocol and DiLCO-32 protocol are the most competitive from the energy consumption point of view. The other approaches have a high energy consumption due to activating a larger number of redundant nodes.
+%as well as the energy consumed during the different modes of sensor nodes.
+In fact, the distribution of computation over the subregions greatly reduces the number of communications and the time of listening, thanks to the partitioning of the initial network into several independent subnetworks.
+
+
+\item {{\bf Network Lifetime}}
+%\subsubsection{The Network Lifetime}
+%In this experiment, we have observed the superiority of DiLCO-16 protocol and DiLCO-32 protocol against other two approaches in prolonging the network lifetime.
+
+%In figures~\ref{Figures/ch4/R3/LT95} and \ref{Figures/ch4/R3/LT50}, network lifetime, $Lifetime95$ and $Lifetime50$ respectively, are illustrated for different network sizes.
+
+\begin{figure}[h!]
+\centering
+\includegraphics[scale=0.8]{Figures/ch4/R3/LT95.eps}
+\caption{Network Lifetime for $Lifetime_{95}$}
+\label{Figures/ch4/R3/LT95}
+\end{figure}
+
+
+\begin{figure}[h!]
+\centering
+\includegraphics[scale=0.8]{Figures/ch4/R3/LT50.eps}
+\caption{Network Lifetime for $Lifetime_{50}$}
+\label{Figures/ch4/R3/LT50}
+\end{figure}
+
+As highlighted by figures~\ref{Figures/ch4/R3/LT95} and \ref{Figures/ch4/R3/LT50}, the network lifetime obviously increases when the size of the network increases, with DiLCO-16 protocol and DiLCO-32 protocol which lead to maximize the lifetime of the network compared with other approaches.
+By choosing the best suited nodes, for each period, by optimizing the coverage and lifetime of the network to cover the area of interest and by letting the other ones sleep in order to be used later in next periods, DiLCO-16 protocol and DiLCO-32 protocol efficiently prolong the network lifetime.
+Comparison shows that DiLCO-16 protocol and DiLCO-32 protocol, which use distributed optimization over the subregions, are the best ones because they are robust to network disconnection during the network lifetime as well as they consume less energy in comparison with other approaches.
+%It also means that distributing the algorithm in each node and subdividing the sensing field into many subregions, which are managed independently and simultaneously, is the most relevant way to maximize the lifetime of a network.
+
+
+\end{enumerate}
+