]> AND Private Git Repository - ThesisAli.git/blobdiff - CHAPITRE_01.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
Update by Ali
[ThesisAli.git] / CHAPITRE_01.tex
index 76780d90864b3375f4346131ecaa8b18f446130f..971dbebb563a2e15b7a906ba1382531ef3aea2e1 100644 (file)
@@ -407,6 +407,7 @@ In this section, two energy consumption models are explained. The first model ca
 
 
 \subsection{Radio Energy Dissipation Model}
+\label{ch1:sec9:subsec1}
 Since the communication unit is the most energy-consuming part inside the sensor node, and accordingly there are many authors used the radio energy dissipation model that proposed in~\cite{ref109,ref110} as energy consumption model during the simulation and evaluation of their works in WSNs. Figure~\ref{RDM} shows the radio energy dissipation model.
 \begin{figure}[h!]
 \centering
@@ -441,6 +442,7 @@ The radio energy dissipation model have been considered only the energy consumed
 
 
 \subsection{Our Energy Consumption Model}
+\label{ch1:sec9:subsec2}
 In this dissertation, the coverage protocols have been used an energy consumption model proposed by~\cite{ref111} and based on \cite{ref112} with slight  modifications.  The energy consumption for  sending/receiving the packets is added, whereas the  part related to the sensing range is removed because we consider a fixed sensing range.
 For our energy consumption model, we refer to the sensor node Medusa~II which uses an Atmels  AVR ATmega103L microcontroller~\cite{ref112}. The typical architecture  of a  sensor  is composed  of  four  subsystems: the  MCU subsystem which is capable of computation, communication subsystem (radio) which is responsible  for transmitting/receiving messages, the  sensing subsystem that collects  data, and  the  power supply  which  powers the  complete sensor  node
 \cite{ref112}. Each  of the first three subsystems  can be turned on or  off depending on  the current status  of the sensor.   Energy consumption
@@ -476,7 +478,7 @@ COMPUTATION & on & on & on & 26.83 \\
 \end{table}
 
 For the sake of simplicity we ignore  the energy needed to turn on the radio, to start up the sensor node, to move from one status to another, etc.
-Thus, when a sensor becomes active (i.e., it has already chosen its status), it can turn  its radio  off to  save battery. The value of energy spent to send a 1-bit-content message is  obtained by using  the equation in  ~\cite{ref112} to calculate  the energy cost  for transmitting  messages and  we propose  the same
+Thus, when a sensor becomes active (i.e., it has already chosen its status), it can turn  its radio  off to  save battery. The value of energy spent to send a 1-bit-content message is  obtained by using  the equation in  ~\cite{ref112} to calculate  the energy cost for transmitting  messages and  we propose  the same
 value for receiving the packets. The energy  needed to send or receive a 1-bit packet is equal to $0.2575~mW$.