-In \cite{ref84}, Xu et al. have described an algorithm, called Geographical Adaptive Fidelity (GAF), which uses geographic location information to divide the area of interest into fixed square grids. Within each grid, it keeps only one node staying awake to take the responsibility of sensing and communication. Figure~\ref{gaf1} gives an example of fixed square grid in GAF.
+
+In \cite{ref133} authors prove that if the perimeters of sensors are sufficiently covered it will be the case for the whole area. They provide an algorithm in $O(nd~log~d)$ time to compute the perimeter-coverage of
+each sensor, where $d$ denotes the maximum number of sensors that are neighboring to a sensor and $n$ is the total number of sensors in the network.
+
+
+In \cite{GAF}, Xu et al. have described an algorithm, called Geographical Adaptive Fidelity (GAF), which uses geographic location information to divide the area of interest into fixed square grids. Within each grid, it keeps only one node staying awake to take the responsibility of sensing and communication. Figure~\ref{gaf1} gives an example of fixed square grid in GAF.