-
-\item \textbf{Industry Applications: Manufacturing and smart grids:}
-The most significant goal for many companies is the automation of controlling and monitoring systems in many applications such as: manufacturing, water treatment, electrical power distribution, and oil and gas refining. The WSNs is incorporated in Supervisory Control and Data Acquisition (SCADA) systems and smart grids~\cite{ref22}. SCADA systems are a computer softwares by which the industrial processes in factories are controlled and supervised. The wireless sensors are used with actuators to control the factory, detection of liquid/gas leakages, and inventory management. These applications are needed for precise monitoring of temperature, shock, and noise factors in remote locations such as tanks, turbine engines or pipelines. In Smart Grids, the goal is to supervise the energy supply and consumption operation. The main WSN applications in smart grid includes: sensing the relevant parameters affecting power output (pressure, humidity, wind orientation, radiation, etc.); control of turbines, motors and underground cables; home energy management; and remote detection of faulty components.
+\item \textbf{Transportation Systems Applications:}
+The fast development in the domain of Intelligent Transport Systems (ITS) ranging from flight transport and traffic management to in-vehicle services like driver alert or traffic monitoring. As a result, the transportation data collection and communication represent a major role in the ITS~\cite{ref37}.
+
+\indent The WSNs can be integrated with the transportation systems such as traffic monitoring, real-time safety systems, and commercial services~\cite{ref22}. In traffic-monitoring systems, the wireless sensors are embedded within or across the pavement or intersections, and some sensors are installed above or on the side of roads so as to collect the informations related to the traffic~\cite{ref36}. These WSN traffic systems are used to detect the vehicles, vehicles count, and classification. In safety applications, the wireless sensors are used to deal with many cases such as: driving safety~\cite{ref41}, vehicle safety~\cite{ref38}, where many wireless sensors are scattered on roads or vehicles, collaborating through Vehicle-to-Vehicle, Vehicle-to-Roadside, and Vehicle-to-Infrastructure communications. Extensive research in these domains are concentrated on preventing the collisions among vehicles by Vehicle-to-Vehicle communications~\cite{ref40}. In addition, commercial applications can be given by service providers. They include route guidance to avoid rush-hour jams, smart high-speed tolling, assistance in finding a parking space, and automobile journey statistics collection~\cite{ref22}.
+
+\item \textbf{Industry Applications: Manufacturing and Smart Grids:}
+The most significant goal for many companies is the automation of controlling and monitoring systems in many applications such as: manufacturing, water treatment, electrical power distribution, and oil and gas refining. The WSNs is incorporated in Supervisory Control and Data Acquisition (SCADA) systems and smart grids~\cite{ref22}. SCADA systems are a computer softwares by which the industrial processes in factories are controlled and supervised. The wireless sensors are used with actuators to control the factory, detection of liquid/gas leakages, and inventory management. These applications are needed for precise monitoring of temperature, shock, and noise factors in remote locations such as tanks, turbine engines, or pipelines. In Smart Grids, the goal is to supervise the power supply and depletion operation. The main applications in smart grid include: sensing the relevant parameters affecting power output (pressure, humidity, wind orientation, radiation, etc.); control of turbines, motors and underground cables; home energy management; and remote detection of faulty components.