-As shown in the figure ~\ref{Figures/ch4/R1/CR}, as the number of subregions increases, the coverage preservation for the area of interest increases for a larger number of rounds. Coverage ratio decreases when the number of rounds increases due to dead nodes. Although some nodes are dead, thanks to DiLCO-8, DiLCO-16, and DiLCO-32 protocols, other nodes are preserved to ensure the coverage. Moreover, when we have a dense sensor network, it leads to maintain the coverage for a larger number of rounds. DiLCO-8, DiLCO-16, and DiLCO-32 protocols are slightly more efficient than other protocols, because they subdivide the area of interest into 8, 16 and 32~subregions; if one of the subregions becomes disconnected, the coverage may be still ensured in the remaining subregions.
+As shown in the Figure ~\ref{Figures/ch4/R1/CR}, as the number of subregions increases, the coverage preservation for the area of interest increases for a larger number of rounds. Coverage ratio decreases when the number of rounds increases due to dead nodes. Although some nodes are dead, thanks to DiLCO-8, DiLCO-16, and DiLCO-32 protocols, other nodes are preserved to ensure the coverage. Moreover, when we have a dense sensor network, it leads to maintain the coverage for a larger number of rounds. DiLCO-8, DiLCO-16, and DiLCO-32 protocols are slightly more efficient than other protocols, because they subdivide the area of interest into 8, 16 and 32~subregions; if one of the subregions becomes disconnected, the coverage may be still ensured in the remaining subregions.