]> AND Private Git Repository - ThesisAli.git/blobdiff - CHAPITRE_04.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
Update by Ali
[ThesisAli.git] / CHAPITRE_04.tex
index a692dc32d0b86eca3012833c7ff1af8bc26f599b..7ed80e8bd4d9c83b1f0f36c3d230e3939fba1d8d 100644 (file)
@@ -66,12 +66,16 @@ $X_2=( p_x + R_s * (1), p_y + R_s * (0) )$\\
 $X_3=( p_x + R_s * (-1), p_y + R_s * (0)) $\\
 $X_4=( p_x + R_s * (0), p_y + R_s * (1) )$\\
 $X_5=( p_x + R_s * (0), p_y + R_s * (-1 )) $\\
 $X_3=( p_x + R_s * (-1), p_y + R_s * (0)) $\\
 $X_4=( p_x + R_s * (0), p_y + R_s * (1) )$\\
 $X_5=( p_x + R_s * (0), p_y + R_s * (-1 )) $\\
-$X_6= ( p_x + R_s * (\frac{-\sqrt{2}}{2}), p_y + R_s * (0)) $\\
-$X_7=( p_x + R_s *  (\frac{\sqrt{2}}{2}), p_y + R_s * (0))$\\
+%$X_6= ( p_x + R_s * (\frac{-\sqrt{2}}{2}), p_y + R_s * (0)) $\\
+$X_{6}=( p_x + R_s * (\frac{-\sqrt{2}}{2}), p_y + R_s * (\frac{\sqrt{2}}{2})) $\\
+%$X_7=( p_x + R_s *  (\frac{\sqrt{2}}{2}), p_y + R_s * (0))$\\
+$X_{7}=( p_x + R_s * (\frac{\sqrt{2}}{2}), p_y + R_s * (\frac{\sqrt{2}}{2})) $\\
 $X_8=( p_x + R_s * (\frac{-\sqrt{2}}{2}), p_y + R_s * (\frac{-\sqrt{2}}{2})) $\\
 $X_9=( p_x + R_s * (\frac{\sqrt{2}}{2}), p_y + R_s * (\frac{-\sqrt{2}}{2})) $\\
 $X_8=( p_x + R_s * (\frac{-\sqrt{2}}{2}), p_y + R_s * (\frac{-\sqrt{2}}{2})) $\\
 $X_9=( p_x + R_s * (\frac{\sqrt{2}}{2}), p_y + R_s * (\frac{-\sqrt{2}}{2})) $\\
-$X_{10}=( p_x + R_s * (\frac{-\sqrt{2}}{2}), p_y + R_s * (\frac{\sqrt{2}}{2})) $\\
-$X_{11}=( p_x + R_s * (\frac{\sqrt{2}}{2}), p_y + R_s * (\frac{\sqrt{2}}{2})) $\\
+%$X_{10}=( p_x + R_s * (\frac{-\sqrt{2}}{2}), p_y + R_s * (\frac{\sqrt{2}}{2})) $\\
+$X_{10}= ( p_x + R_s * (\frac{-\sqrt{2}}{2}), p_y + R_s * (0)) $\\
+%$X_{11}=( p_x + R_s * (\frac{\sqrt{2}}{2}), p_y + R_s * (\frac{\sqrt{2}}{2})) $\\
+$X_{11}=( p_x + R_s *  (\frac{\sqrt{2}}{2}), p_y + R_s * (0))$\\
 $X_{12}=( p_x + R_s * (0), p_y + R_s * (\frac{\sqrt{2}}{2})) $\\
 $X_{13}=( p_x + R_s * (0), p_y + R_s * (\frac{-\sqrt{2}}{2})) $\\
 $X_{14}=( p_x + R_s * (\frac{\sqrt{3}}{2}), p_y + R_s * (\frac{1}{2})) $\\
 $X_{12}=( p_x + R_s * (0), p_y + R_s * (\frac{\sqrt{2}}{2})) $\\
 $X_{13}=( p_x + R_s * (0), p_y + R_s * (\frac{-\sqrt{2}}{2})) $\\
 $X_{14}=( p_x + R_s * (\frac{\sqrt{3}}{2}), p_y + R_s * (\frac{1}{2})) $\\
@@ -94,7 +98,7 @@ $X_{25}=( p_x + R_s * (\frac{1}{2}), p_y + R_s * (\frac{-\sqrt{3}}{2})) $.
  \begin{multicols}{2}
 \centering
 \includegraphics[scale=0.33]{Figures/ch4/fig21.pdf}\\~ ~ ~ ~ ~ ~ ~ ~(a)
  \begin{multicols}{2}
 \centering
 \includegraphics[scale=0.33]{Figures/ch4/fig21.pdf}\\~ ~ ~ ~ ~ ~ ~ ~(a)
-\includegraphics[scale=0.33]{Figures/ch4/principles13.pdf}\\~ ~ ~ ~ ~ ~(c) 
+\includegraphics[scale=0.33]{Figures/ch4/fig23.pdf}\\~ ~ ~ ~ ~ ~(c) 
 \hfill \hfill
 \includegraphics[scale=0.33]{Figures/ch4/fig25.pdf}\\~ ~ ~ ~ ~ ~(e)
 \includegraphics[scale=0.33]{Figures/ch4/fig22.pdf}\\~ ~ ~ ~ ~ ~ ~ ~ ~(b)
 \hfill \hfill
 \includegraphics[scale=0.33]{Figures/ch4/fig25.pdf}\\~ ~ ~ ~ ~ ~(e)
 \includegraphics[scale=0.33]{Figures/ch4/fig22.pdf}\\~ ~ ~ ~ ~ ~ ~ ~ ~(b)