-As shown in Figures~\ref{Figures/ch4/R1/EC95} and ~\ref{Figures/ch4/R1/EC50}, DiLCO-2 consumes more energy than the other versions of DiLCO, especially for large sizes of network. This is easy to understand since the bigger the number of sensors involved in the integer program, the larger the computation time to solve the optimization problem, as well as the higher energy consumed during the communication.
-\begin{figure}[h!]
-\centering
-\includegraphics[scale=0.8]{Figures/ch4/R1/EC50.pdf}
-\caption{Energy Consumption for $Lifetime_{50}$}
-\label{Figures/ch4/R1/EC50}
-\end{figure}
-In fact, the distribution of the computation over many subregions greatly reduces the number of communications, the time of listening and computation.
+As shown in Figures~\ref{Figures/ch4/R1/EC}(a) and~\ref{Figures/ch4/R1/EC}(b), DiLCO-2 consumes more energy than the other versions of DiLCO, especially for large sizes of network. This is easy to understand since the bigger the number of sensors involved in the integer program, the larger the computation time to solve the optimization problem, as well as the higher energy consumed during the communication. In fact, the distribution of the computation over many subregions greatly reduces the number of communications, the time of listening and computation.