-\subsection{Background Idea and Algorithm}
-\label{ch5:sec:02:02}
-The area of interest can be divided using the divide-and-conquer strategy into
-smaller areas, called subregions, and then our MuDiLCO protocol will be
-implemented in each subregion in a distributed way.
-
-As can be seen in Figure~\ref{fig2}, our protocol works in periods fashion,
-where each is divided into 4 phases: Information~Exchange, Leader~Election,
-Decision, and Sensing. The information exchange among wireless sensor nodes is described in chapter 4, section \ref{ch4:sec:02:03:01}. The leader election in each subregion is explained in chapter 4, section \ref{ch4:sec:02:03:02}, but the difference in that the elected leader in each subregion is for each period. In decision phase, each WSNL will solve an integer program to select which cover sets will be
-activated in the following sensing phase to cover the subregion to which it belongs. The integer program will produce $T$ cover sets, one for each round. The WSNL will send an Active-Sleep packet to each sensor in the subregion based on the algorithm's results, indicating if the sensor should be active or not in
-each round of the sensing phase. Each sensing phase is itself divided into $T$ rounds
-and for each round a set of sensors (a cover set) is responsible for the sensing
-task. Each sensor node in the subregion will
-receive an Active-Sleep packet from WSNL, informing it to stay awake or to go to
-sleep for each round of the sensing phase. Algorithm~\ref{alg:MuDiLCO}, which
-will be executed by each node at the beginning of a period, explains how the
-Active-Sleep packet is obtained. In this way, a multiround optimization process is performed during each
-period after Information~Exchange and Leader~Election phases, in order to
-produce $T$ cover sets that will take the mission of sensing for $T$ rounds.
+%\subsection{Background Idea and Algorithm}
+%\label{ch5:sec:02:02}
+%The area of interest can be divided using the divide-and-conquer strategy into smaller areas, called subregions, and then our MuDiLCO protocol will be implemented in each subregion in a distributed way.
+
+As can be seen in Figure~\ref{fig2}, our protocol works in periods fashion, where each is divided into 4 phases: Information~Exchange, Leader~Election, Decision, and Sensing.
+%The information exchange among wireless sensor nodes is described in chapter 4, section \ref{ch4:sec:02:03:01}. The leader election in each subregion is explained in chapter 4, section \ref{ch4:sec:02:03:02},
+The difference with MuDiLCO in that the elected leader in each subregion is for each period. In decision phase, each leader will solve an integer program to select which cover sets will be activated in the following sensing phase to cover the subregion to which it belongs. The integer program will produce $T$ cover sets, one for each round. The leader will send an ActiveSleep packet to each sensor in the subregion based on the algorithm's results, indicating if the sensor should be active or not in
+each round of the sensing phase. Each sensing phase is itself divided into $T$ rounds and for each round a set of sensors (a cover set) is responsible for the sensing task.
+%Each sensor node in the subregion will receive an ActiveSleep packet from leader, informing it to stay awake or to go to sleep for each round of the sensing phase.
+Algorithm~\ref{alg:MuDiLCO}, which will be executed by each node at the beginning of a period, explains how the ActiveSleep packet is obtained. In this way, a multiround optimization process is performed during each
+period after Information~Exchange and Leader~Election phases, in order to produce $T$ cover sets that will take the mission of sensing for $T$ rounds.