]> AND Private Git Repository - ThesisAli.git/blobdiff - CHAPITRE_04.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
Update by Ali
[ThesisAli.git] / CHAPITRE_04.tex
index fb4963be5f1ced0e246eeced0e4e2c9a7a7a43df..3e691b7d4908697ff7c24d9cf6ab23bf1ea4879d 100644 (file)
@@ -32,7 +32,7 @@ The remainder of this chapter is organized as follows. The next section is devot
 \noindent  We consider a sensor  network composed  of static  nodes distributed independently and uniformly at random.  A high-density deployment ensures a high coverage ratio of the interested area at the start. The nodes are supposed to have homogeneous characteristics from a communication and a processing point of view, whereas they  have heterogeneous energy provisions.  Each  node has access to its location thanks,  either to a hardware component (like a  GPS unit) or a location discovery algorithm. Furthermore, we assume that sensor nodes are time synchronized in order to properly coordinate their operations to achieve complex sensing tasks~\cite{ref157}. Two sensor nodes are supposed to be neighbors if the euclidean distance between them is at most equal to 2$R_s$, where $R_s$ is the sensing range.
  
 
 \noindent  We consider a sensor  network composed  of static  nodes distributed independently and uniformly at random.  A high-density deployment ensures a high coverage ratio of the interested area at the start. The nodes are supposed to have homogeneous characteristics from a communication and a processing point of view, whereas they  have heterogeneous energy provisions.  Each  node has access to its location thanks,  either to a hardware component (like a  GPS unit) or a location discovery algorithm. Furthermore, we assume that sensor nodes are time synchronized in order to properly coordinate their operations to achieve complex sensing tasks~\cite{ref157}. Two sensor nodes are supposed to be neighbors if the euclidean distance between them is at most equal to 2$R_s$, where $R_s$ is the sensing range.
  
 
-\indent We consider a boolean disk coverage model which is the most widely used sensor coverage  model in the  literature. Thus, since  a sensor has a constant sensing range $R_s$, every space points within a disk centered at a sensor with the radius of the sensing range is said to be covered with this sensor. We also assume  that  the communication  range $R_c$ is at least twice the sensing range $R_s$ (i.e., $R_c \geq  2R_s$). In  fact, Zhang and Hou~\cite{ref126} proved  that if the transmission range  fulfills the previous hypothesis, a complete coverage of  a convex area implies connectivity among the working nodes in the active mode. we consider multi-hop communication.
+\indent We consider a boolean disk coverage model which is the most widely used sensor coverage  model in the  literature. Thus, since  a sensor has a constant sensing range $R_s$, each space point within a disk centered at a sensor with the radius of the sensing range is said to be covered with this sensor. We also assume  that  the communication  range $R_c$ is at least twice the sensing range $R_s$ (i.e., $R_c \geq  2R_s$). In  fact, Zhang and Hou~\cite{ref126} proved  that if the transmission range  fulfills the previous hypothesis, a complete coverage of  a convex area implies connectivity among the working nodes in the active mode. we consider multi-hop communication.
 %We assume that each sensor node can directly transmit its measurements toward a mobile sink node. 
 %For example, a sink can be an unmanned aerial vehicle (UAV) flying regularly over the sensor field to collect measurements from sensor nodes. The mobile sink node collects the measurements and transmits them to the base station.
 
 %We assume that each sensor node can directly transmit its measurements toward a mobile sink node. 
 %For example, a sink can be an unmanned aerial vehicle (UAV) flying regularly over the sensor field to collect measurements from sensor nodes. The mobile sink node collects the measurements and transmits them to the base station.
 
@@ -139,7 +139,7 @@ This  step includes choosing  a wireless  sensor node called leader, which  will
 
 \subsubsection{Decision phase}
 \label{ch4:sec:02:03:03}
 
 \subsubsection{Decision phase}
 \label{ch4:sec:02:03:03}
-The  leader will  solve an  integer  program (see  section~\ref{ch4:sec:03}) to select which sensors will be  activated in the following sensing phase to cover  the subregion.  It will send  ActiveSleep packet  to each sensor in the subregion based on the algorithm's results.
+The  leader will  solve an  integer  program (see  section~\ref{ch4:sec:03}) to select which sensors will be  activated in the following sensing phase to cover  the subregion.  It will send an ActiveSleep packet  to each sensor in the subregion based on the algorithm's results.
 
 %($RE_j$)  corresponds to its remaining energy) to be alive during  the selected periods knowing  that $E_{th}$ is the  amount of energy required to be alive during one period.
 
 
 %($RE_j$)  corresponds to its remaining energy) to be alive during  the selected periods knowing  that $E_{th}$ is the  amount of energy required to be alive during one period.
 
@@ -334,7 +334,8 @@ high coverage ratio.
 
 \subsection{Modeling Language and Optimization Solver}
 \label{ch4:sec:04:02}
 
 \subsection{Modeling Language and Optimization Solver}
 \label{ch4:sec:04:02}
-The modeling language for Mathematical Programming (AMPL)~\cite{AMPL} is  employed to generate the integer program instance  in a  standard format, which  is then read  and solved  by the optimization solver  GLPK (GNU  linear Programming Kit  available in  the public domain) \cite{glpk} through a Branch-and-Bound method. Obviously, It is infeasible to use GLPK on a real sensor nodes, we use it in the simulation only for simplicity. GLPK is used to compute the optimal schedule.
+The modeling language for Mathematical Programming (AMPL)~\cite{AMPL} is  employed to generate the integer program instance  in a  standard format, which  is then read  and solved  by the optimization solver  GLPK (GNU  linear Programming Kit  available in  the public domain) \cite{glpk} through a Branch-and-Bound method. 
+%Obviously, It is infeasible to use GLPK on a real sensor nodes, we use it in the simulation only for simplicity. GLPK is used to compute the optimal schedule.
 
 \subsection{Energy Consumption Model}
 \label{ch4:sec:04:03}
 
 \subsection{Energy Consumption Model}
 \label{ch4:sec:04:03}
@@ -482,7 +483,7 @@ The results presented in the figure show that increasing the number of subregion
 %\subsubsection{The percentage of stopped simulation runs}
 
 Figure~\ref{Figures/ch4/R1/SR} illustrates the percentage of stopped simulation runs per period for 150 deployed nodes. DiLCO-2 is the approach which stops first because it applies the optimization on only two subregions and the high energy consumption accelerate the network disconnection. Thus, as explained previously, in case of DiLCO-16 and DiLCO-32 which have many subregions, the optimization effectively continues as long as a subnetwork in a subregion is still connected. This longer partial coverage optimization participates in extending the network lifetime. 
 %\subsubsection{The percentage of stopped simulation runs}
 
 Figure~\ref{Figures/ch4/R1/SR} illustrates the percentage of stopped simulation runs per period for 150 deployed nodes. DiLCO-2 is the approach which stops first because it applies the optimization on only two subregions and the high energy consumption accelerate the network disconnection. Thus, as explained previously, in case of DiLCO-16 and DiLCO-32 which have many subregions, the optimization effectively continues as long as a subnetwork in a subregion is still connected. This longer partial coverage optimization participates in extending the network lifetime. 
-\begin{figure}[h!]
+\begin{figure}[t]
 \centering
 \includegraphics[scale=0.8]{Figures/ch4/R1/SR.pdf} 
 \caption{Percentage of stopped simulation runs for 150 deployed nodes }
 \centering
 \includegraphics[scale=0.8]{Figures/ch4/R1/SR.pdf} 
 \caption{Percentage of stopped simulation runs for 150 deployed nodes }
@@ -494,66 +495,58 @@ Figure~\ref{Figures/ch4/R1/SR} illustrates the percentage of stopped simulation
 \item {{\bf Energy Consumption}}
 %\subsubsection{The Energy Consumption}
 
 \item {{\bf Energy Consumption}}
 %\subsubsection{The Energy Consumption}
 
-We measure the energy consumed by the sensors during the communication, listening, computation, active, and sleep modes for different network densities and compare it for different subregions.  Figures~\ref{Figures/ch4/R1/EC95} and ~\ref{Figures/ch4/R1/EC50} illustrate the energy consumption for different network sizes for $Lifetime_{95}$ and $Lifetime_{50}$. 
+We measure the energy consumed by the sensors during the communication, listening, computation, active, and sleep modes for different network densities and compare it for different subregions.  Figures~\ref{Figures/ch4/R1/EC}(a) and~\ref{Figures/ch4/R1/EC}(b) illustrate the energy consumption for different network sizes for $Lifetime_{95}$ and $Lifetime_{50}$. The results show that DiLCO-16 and DiLCO-32 are the most competitive from the energy consumption point of view. The other approaches have a high energy consumption due to the energy consumed during the different modes of the sensor node.
 
 \begin{figure}[h!]
 \centering
 
 \begin{figure}[h!]
 \centering
-\includegraphics[scale=0.8]{Figures/ch4/R1/EC95.pdf} 
-\caption{Energy Consumption for $Lifetime_{95}$}
-\label{Figures/ch4/R1/EC95}
-\end{figure} 
+ %\begin{multicols}{1}
+\centering
+\includegraphics[scale=0.8]{Figures/ch4/R1/EC95.pdf}\\~ ~ ~ ~ ~(a) \\
+%\vfill
+\includegraphics[scale=0.8]{Figures/ch4/R1/EC50.pdf}\\~ ~ ~ ~ ~(b)
 
 
-The results show that DiLCO-16 and DiLCO-32 are the most competitive from the energy consumption point of view. The other approaches have a high energy consumption due to the energy consumed during the different modes of the sensor node.\\
+%\end{multicols} 
+\caption{Energy consumption for (a) $Lifetime_{95}$ and (b) $Lifetime_{50}$}
+\label{Figures/ch4/R1/EC}
+\end{figure}
  
  
-As shown in Figures~\ref{Figures/ch4/R1/EC95} and ~\ref{Figures/ch4/R1/EC50}, DiLCO-2 consumes more energy than the other versions of DiLCO, especially for large sizes of network. This is easy to understand since the bigger the number of sensors involved in the integer program, the larger the computation time to solve the optimization problem, as well as the higher energy consumed during the communication.  
-\begin{figure}[h!]
-\centering
-\includegraphics[scale=0.8]{Figures/ch4/R1/EC50.pdf} 
-\caption{Energy Consumption for $Lifetime_{50}$}
-\label{Figures/ch4/R1/EC50}
-\end{figure} 
-In fact,  the distribution of the computation over many subregions greatly reduces the number of communications, the time of listening and computation. 
+As shown in Figures~\ref{Figures/ch4/R1/EC}(a) and~\ref{Figures/ch4/R1/EC}(b), DiLCO-2 consumes more energy than the other versions of DiLCO, especially for large sizes of network. This is easy to understand since the bigger the number of sensors involved in the integer program, the larger the computation time to solve the optimization problem, as well as the higher energy consumed during the communication. In fact,  the distribution of the computation over many subregions greatly reduces the number of communications, the time of listening and computation. 
 
 \item {{\bf Execution Time}}
 %\subsubsection{Execution Time}
 
 
 \item {{\bf Execution Time}}
 %\subsubsection{Execution Time}
 
-In this experiment, the execution time of the distributed optimization approach has been studied. Figure~\ref{Figures/ch4/R1/T} gives the average execution times in seconds for the decision phase (solving of the optimization problem) during one period. They are given for the different approaches and various numbers of sensors. The original execution time is computed as described in section \ref{ch4:sec:04:04}. 
+In this experiment, the execution time of the distributed optimization approach has been studied. Figure~\ref{Figures/ch4/R1/T} gives the average execution times in seconds for the decision phase (solving of the optimization problem) during one period. They are given for the different approaches and various numbers of sensors. The original execution time is computed as described in section \ref{ch4:sec:04:04}. \\ \\ \\ \\
 
 
-We can see from Figure~\ref{Figures/ch4/R1/T} that DiLCO-32 has very low execution times in comparison with other DiLCO versions because it is distributed on larger number of small subregions.  Conversely, DiLCO-2 requires to solve an optimization problem considering half the nodes in each subregion and thus presents high execution times. Overall, to be able to deal with very large networks,  a distributed method is clearly required.
 
 
-\begin{figure}[h!]
+
+\begin{figure}[t]
 \centering
 \includegraphics[scale=0.8]{Figures/ch4/R1/T.pdf}  
 \caption{Execution Time (in seconds)}
 \label{Figures/ch4/R1/T}
 \end{figure} 
 
 \centering
 \includegraphics[scale=0.8]{Figures/ch4/R1/T.pdf}  
 \caption{Execution Time (in seconds)}
 \label{Figures/ch4/R1/T}
 \end{figure} 
 
-
+We can see from Figure~\ref{Figures/ch4/R1/T} that DiLCO-32 has very low execution times in comparison with other DiLCO versions because it is distributed on larger number of small subregions.  Conversely, DiLCO-2 requires to solve an optimization problem considering half the nodes in each subregion and thus presents high execution times. Overall, to be able to deal with very large networks,  a distributed method is clearly required.
 
 \item {{\bf Network Lifetime}}
 %\subsubsection{The Network Lifetime}
 
 
 \item {{\bf Network Lifetime}}
 %\subsubsection{The Network Lifetime}
 
-In Figure~\ref{Figures/ch4/R1/LT95} and \ref{Figures/ch4/R1/LT50}, network lifetime, $Lifetime_{95}$ and $Lifetime_{50}$ respectively, are illustrated for different network sizes. 
+In Figures~\ref{Figures/ch4/R1/LT}(a) and \ref{Figures/ch4/R1/LT}(b), network lifetime, $Lifetime_{95}$ and $Lifetime_{50}$ respectively, are illustrated for different network sizes. 
+
 
 \begin{figure}[h!]
 \centering
 
 \begin{figure}[h!]
 \centering
-\includegraphics[scale=0.8]{Figures/ch4/R1/LT95.pdf}  
-\caption{Network Lifetime for $Lifetime_{95}$}
-\label{Figures/ch4/R1/LT95}
-\end{figure} 
-For DiLCO-2 protocol, execution times quickly become unsuitable for a sensor network, and the energy consumed during the communication, seems to be huge because it is distributed over only two subregions.
+\centering
+\includegraphics[scale=0.8]{Figures/ch4/R1/LT95.pdf}\\~ ~ ~ ~ ~(a) \\
 
 
-As highlighted by figures~\ref{Figures/ch4/R1/LT95} and \ref{Figures/ch4/R1/LT50}, the network lifetime obviously increases when the size of the network increases. The network lifetime also increases with the number of subregions, but only up to a given number. Thus we can see that DiLCO-16 leads to the larger lifetime improvement and not DiLCO-32. In fact, DilCO-32 protocol puts in active mode a larger number of sensor nodes especially near the borders of the subdivisions.
+\includegraphics[scale=0.8]{Figures/ch4/R1/LT50.pdf}\\~ ~ ~ ~ ~(b)
 
 
-%Comparison shows that DiLCO-16 protocol, which uses 16 leaders, is the best one because it uses less number of active nodes during the network lifetime compared with DiLCO-32 protocol.
-It means that distributing the protocol in each node and subdividing the sensing field into many subregions, which are managed independently and simultaneously, is a relevant way to maximize the lifetime of a network.
+\caption{Network lifetime for (a) $Lifetime_{95}$ and (b) $Lifetime_{50}$}
+  \label{Figures/ch4/R1/LT}
+\end{figure}
+
+For DiLCO-2 protocol, execution times quickly become unsuitable for a sensor network, and the energy consumed during the communication, seems to be huge because it is distributed over only two subregions. As highlighted by Figures~\ref{Figures/ch4/R1/LT}(a) and \ref{Figures/ch4/R1/LT}(b), the network lifetime obviously increases when the size of the network increases. The network lifetime also increases with the number of subregions, but only up to a given number. Thus we can see that DiLCO-16 leads to the larger lifetime improvement and not DiLCO-32. In fact, DilCO-32 protocol puts in active mode a larger number of sensor nodes especially near the borders of the subdivisions. It means that distributing the protocol in each node and subdividing the sensing field into many subregions, which are managed independently and simultaneously, is a relevant way to maximize the lifetime of a network.
 
 
-\begin{figure}[h!]
-\centering
-\includegraphics[scale=0.8]{Figures/ch4/R1/LT50.pdf}  
-\caption{Network Lifetime for $Lifetime_{50}$}
-\label{Figures/ch4/R1/LT50}
-\end{figure} 
 
 \end{enumerate}
 
 
 \end{enumerate}
 
@@ -578,7 +571,7 @@ Figure~\ref{Figures/ch4/R2/CR} shows the average coverage ratio for 150 deployed
 \end{figure} 
 As can be seen in Figure~\ref{Figures/ch4/R2/CR}, at the beginning the models which use a larger number of primary points provide slightly better coverage ratios, but latter they are the worst. 
 %Moreover, when the number of periods increases, coverage ratio produced by Model-9, Model-13, Model-17, and Model-21 decreases in comparison with Model-5 due to a larger time computation for the decision process for larger number of primary points.
 \end{figure} 
 As can be seen in Figure~\ref{Figures/ch4/R2/CR}, at the beginning the models which use a larger number of primary points provide slightly better coverage ratios, but latter they are the worst. 
 %Moreover, when the number of periods increases, coverage ratio produced by Model-9, Model-13, Model-17, and Model-21 decreases in comparison with Model-5 due to a larger time computation for the decision process for larger number of primary points.
-All models decrease, but Model-5 is the one with the slowest decrease
+Moreover, when the number of periods increases, coverage ratio produced by all models decrease, but Model-5 is the one with the slowest decrease due to a smaller time computation of decision process for a smaller number of primary points
 As shown in Figure ~\ref{Figures/ch4/R2/CR}, coverage ratio decreases when the number of periods increases due to dead nodes. Model-5 is slightly more efficient than other models, because it offers a good coverage ratio for a larger number of periods in comparison with other models.
 
 \item {{\bf Active Sensors Ratio}}
 As shown in Figure ~\ref{Figures/ch4/R2/CR}, coverage ratio decreases when the number of periods increases due to dead nodes. Model-5 is slightly more efficient than other models, because it offers a good coverage ratio for a larger number of periods in comparison with other models.
 
 \item {{\bf Active Sensors Ratio}}
@@ -614,20 +607,20 @@ When the number of primary points is increased, the percentage of the stopped si
 \item {{\bf Energy Consumption}}
 %\subsubsection{The Energy Consumption}
 
 \item {{\bf Energy Consumption}}
 %\subsubsection{The Energy Consumption}
 
-In this experiment, we study the effect of increasing the primary points to represent the area of the sensor on the energy consumed by the wireless sensor network for different network densities.  Figures~\ref{Figures/ch4/R2/EC95} and ~\ref{Figures/ch4/R2/EC50} illustrate the energy consumption for different network sizes for $Lifetime_{95}$ and $Lifetime_{50}$.
+In this experiment, we study the effect of increasing the primary points to represent the area of the sensor on the energy consumed by the wireless sensor network for different network densities.  Figures~\ref{Figures/ch4/R2/EC}(a) and~\ref{Figures/ch4/R2/EC}(b) illustrate the energy consumption for different network sizes for $Lifetime_{95}$ and $Lifetime_{50}$.
+
 \begin{figure}[h!]
 \centering
 \begin{figure}[h!]
 \centering
-\includegraphics[scale=0.8]{Figures/ch4/R2/EC95.pdf} 
-\caption{Energy Consumption with $Lifetime_{95}$}
-\label{Figures/ch4/R2/EC95}
-\end{figure} 
-\begin{figure}[h!]
+ %\begin{multicols}{1}
 \centering
 \centering
-\includegraphics[scale=0.8]{Figures/ch4/R2/EC50.pdf} 
-\caption{Energy Consumption with $Lifetime_{50}$}
-\label{Figures/ch4/R2/EC50}
-\end{figure} 
+\includegraphics[scale=0.8]{Figures/ch4/R2/EC95.pdf}\\~ ~ ~ ~ ~(a) \\
+%\vfill
+\includegraphics[scale=0.8]{Figures/ch4/R2/EC50.pdf}\\~ ~ ~ ~ ~(b)
+
+%\end{multicols} 
+\caption{Energy consumption for (a) $Lifetime_{95}$ and (b) $Lifetime_{50}$}
+\label{Figures/ch4/R2/EC}
+\end{figure}
 
 We see from the results presented in both figures that the energy consumed by the network for each period increases when the number of primary points increases. Indeed, the decision for the optimization process requires more time, which leads to consuming more energy during the listening mode. The results show that Model-5 is the most competitive from the energy consumption point of view and the coverage ratio point of view. The other models have a high energy consumption  due to the increase in the primary points. In fact, Model-5 is a good candidate to be used by wireless sensor network because it preserves a good coverage ratio with a suitable energy consumption in comparison with other models. 
 
 
 We see from the results presented in both figures that the energy consumed by the network for each period increases when the number of primary points increases. Indeed, the decision for the optimization process requires more time, which leads to consuming more energy during the listening mode. The results show that Model-5 is the most competitive from the energy consumption point of view and the coverage ratio point of view. The other models have a high energy consumption  due to the increase in the primary points. In fact, Model-5 is a good candidate to be used by wireless sensor network because it preserves a good coverage ratio with a suitable energy consumption in comparison with other models. 
 
@@ -639,7 +632,7 @@ In this experiment, we study the impact of the increase in primary points on the
 \begin{figure}[h!]
 \centering
 \includegraphics[scale=0.8]{Figures/ch4/R2/T.pdf}  
 \begin{figure}[h!]
 \centering
 \includegraphics[scale=0.8]{Figures/ch4/R2/T.pdf}  
-\caption{Execution Time(s) vs The Number of Sensors }
+\caption{Execution Time (in seconds)}
 \label{Figures/ch4/R2/T}
 \end{figure} 
 
 \label{Figures/ch4/R2/T}
 \end{figure} 
 
@@ -651,23 +644,21 @@ Moreover, Model-5 has more suitable execution times and coverage ratio that lead
 
 Finally, we study the effect of increasing the primary points on the lifetime of the network. 
 %In Figure~\ref{Figures/ch4/R2/LT95} and in Figure~\ref{Figures/ch4/R2/LT50}, network lifetime, $Lifetime95$ and $Lifetime50$ respectively, are illustrated for different network sizes. 
 
 Finally, we study the effect of increasing the primary points on the lifetime of the network. 
 %In Figure~\ref{Figures/ch4/R2/LT95} and in Figure~\ref{Figures/ch4/R2/LT50}, network lifetime, $Lifetime95$ and $Lifetime50$ respectively, are illustrated for different network sizes. 
-As highlighted by figures~\ref{Figures/ch4/R2/LT95} and \ref{Figures/ch4/R2/LT50}, the network lifetime obviously increases when the size of the network increases, with  Model-5 that leads to the larger lifetime improvement. Comparison shows that Model-5, which uses less number of primary points, is the best one because it is less energy consuming during the network lifetime. It is also the better one from the point of view of coverage ratio. Our proposed Model-5 efficiently prolongs the network lifetime with a good coverage ratio in comparison with other models. Therefore, we have chosen Model-5 for all the experiments presented thereafter. 
-\begin{figure}[h!]
-\centering
-\includegraphics[scale=0.8]{Figures/ch4/R2/LT95.pdf}  
-\caption{Network Lifetime for $Lifetime_{95}$}
-\label{Figures/ch4/R2/LT95}
-\end{figure} 
+As highlighted by Figures~\ref{Figures/ch4/R2/LT}(a) and \ref{Figures/ch4/R2/LT}(b), the network lifetime obviously increases when the size of the network increases, with  Model-5 that leads to the larger lifetime improvement. \\ \\
 
 
+Comparison shows that Model-5, which uses less number of primary points, is the best one because it is less energy consuming during the network lifetime. It is also the better one from the point of view of coverage ratio. Our proposed Model-5 efficiently prolongs the network lifetime with a good coverage ratio in comparison with other models. Therefore, we have chosen Model-5 for all the experiments presented thereafter. 
 
 \begin{figure}[h!]
 \centering
 
 \begin{figure}[h!]
 \centering
-\includegraphics[scale=0.8]{Figures/ch4/R2/LT50.pdf}  
-\caption{Network Lifetime for $Lifetime_{50}$}
-\label{Figures/ch4/R2/LT50}
-\end{figure} 
+\centering
+\includegraphics[scale=0.8]{Figures/ch4/R2/LT95.pdf}\\~ ~ ~ ~ ~(a) \\
+
+\includegraphics[scale=0.8]{Figures/ch4/R2/LT50.pdf}\\~ ~ ~ ~ ~(b)
 
 
+\caption{Network lifetime for (a) $Lifetime_{95}$ and (b) $Lifetime_{50}$}
+  \label{Figures/ch4/R2/LT}
+\end{figure}
 
 \end{enumerate}
 
 
 \end{enumerate}
 
@@ -681,7 +672,6 @@ Based on the results, conducted in the previous subsections, \ref{ch4:sec:04:02}
 %\subsubsection{Coverage Ratio} 
 
 The average coverage ratio for 150 deployed nodes is demonstrated in Figure~\ref{Figures/ch4/R3/CR}. 
 %\subsubsection{Coverage Ratio} 
 
 The average coverage ratio for 150 deployed nodes is demonstrated in Figure~\ref{Figures/ch4/R3/CR}. 
 \parskip 0pt    
 \begin{figure}[h!]
 \centering
 \parskip 0pt    
 \begin{figure}[h!]
 \centering
@@ -689,8 +679,9 @@ The average coverage ratio for 150 deployed nodes is demonstrated in Figure~\ref
 \caption{Coverage ratio for 150 deployed nodes}
 \label{Figures/ch4/R3/CR}
 \end{figure} 
 \caption{Coverage ratio for 150 deployed nodes}
 \label{Figures/ch4/R3/CR}
 \end{figure} 
+DESK and GAF provide a little better coverage ratio with 99.99\% and 99.91\% against 98.4\% and 98.9\% produced by DiLCO-16 and DiLCO-32 for the lowest number of periods. \\ \\ \\
 
 
-DESK and GAF provide a little better coverage ratio with 99.99\% and 99.91\% against 98.4\% and 98.9\% produced by DiLCO-16 and DiLCO-32 for the lowest number of periods. This is due to the fact that DiLCO protocol versions put in sleep mode redundant sensors thanks to the optimization (which lightly decreases the coverage ratio), while there are more active nodes in the case of DESK and GAF.
+This is due to the fact that DiLCO protocol versions put in sleep mode redundant sensors thanks to the optimization (which lightly decreases the coverage ratio), while there are more active nodes in the case of DESK and GAF.
 
 Moreover, when the number of periods increases, coverage ratio produced by DESK and GAF protocols decreases. 
 %This is due to dead nodes. However, DiLCO-16 protocol and DiLCO-32 protocol maintain almost a good coverage. 
 
 Moreover, when the number of periods increases, coverage ratio produced by DESK and GAF protocols decreases. 
 %This is due to dead nodes. However, DiLCO-16 protocol and DiLCO-32 protocol maintain almost a good coverage. 
@@ -732,21 +723,21 @@ On the one hand, DESK is the approach which stops first because it consumes more
 %\subsubsection{The Energy Consumption}
 %In this experiment, we have studied the effect of the energy consumed by the wireless sensor network during the communication, computation, listening, active, and sleep modes for different network densities and compare it with other approaches.
 
 %\subsubsection{The Energy Consumption}
 %In this experiment, we have studied the effect of the energy consumed by the wireless sensor network during the communication, computation, listening, active, and sleep modes for different network densities and compare it with other approaches.
 
-Figures~\ref{Figures/ch4/R3/EC95} and ~\ref{Figures/ch4/R3/EC50} illustrate the energy consumption for different network sizes for $Lifetime_{95}$ and $Lifetime_{50}$. 
+Figures~\ref{Figures/ch4/R3/EC}(a) and~\ref{Figures/ch4/R3/EC}(b) illustrate the energy consumption for different network sizes for $Lifetime_{95}$ and $Lifetime_{50}$. 
 
 \begin{figure}[h!]
 \centering
 
 \begin{figure}[h!]
 \centering
-\includegraphics[scale=0.8]{Figures/ch4/R3/EC95.eps} 
-\caption{Energy Consumption with $Lifetime_{95}$}
-\label{Figures/ch4/R3/EC95}
-\end{figure} 
-
-\begin{figure}[h!]
+ %\begin{multicols}{1}
 \centering
 \centering
-\includegraphics[scale=0.8]{Figures/ch4/R3/EC50.eps} 
-\caption{Energy Consumption with $Lifetime_{50}$}
-\label{Figures/ch4/R3/EC50}
-\end{figure} 
+\includegraphics[scale=0.8]{Figures/ch4/R3/EC95.eps}\\~ ~ ~ ~ ~(a) \\
+%\vfill
+\includegraphics[scale=0.8]{Figures/ch4/R3/EC50.eps}\\~ ~ ~ ~ ~(b)
+
+%\end{multicols} 
+\caption{Energy consumption for (a) $Lifetime_{95}$ and (b) $Lifetime_{50}$}
+\label{Figures/ch4/R3/EC}
+\end{figure}
+
 
 DiLCO-16 protocol and DiLCO-32 protocol are the most competitive from the energy consumption point of view. The other approaches have a high energy consumption due to activating a larger number of redundant nodes.
 %as well as the energy consumed during the different modes of sensor nodes. 
 
 DiLCO-16 protocol and DiLCO-32 protocol are the most competitive from the energy consumption point of view. The other approaches have a high energy consumption due to activating a larger number of redundant nodes.
 %as well as the energy consumed during the different modes of sensor nodes. 
@@ -761,20 +752,18 @@ In fact,  the distribution of computation over the subregions greatly reduces th
 
 \begin{figure}[h!]
 \centering
 
 \begin{figure}[h!]
 \centering
-\includegraphics[scale=0.8]{Figures/ch4/R3/LT95.eps}  
-\caption{Network Lifetime for $Lifetime_{95}$}
-\label{Figures/ch4/R3/LT95}
-\end{figure}
-
-
-\begin{figure}[h!]
+% \begin{multicols}{0}
 \centering
 \centering
-\includegraphics[scale=0.8]{Figures/ch4/R3/LT50.eps}  
-\caption{Network Lifetime for $Lifetime_{50}$}
-\label{Figures/ch4/R3/LT50}
-\end{figure} 
+\includegraphics[scale=0.8]{Figures/ch4/R3/LT95.eps}\\~ ~ ~ ~ ~(a) \\
+%\hfill 
+\includegraphics[scale=0.8]{Figures/ch4/R3/LT50.eps}\\~ ~ ~ ~ ~(b)
+
+%\end{multicols} 
+\caption{Network lifetime for (a) $Lifetime_{95}$ and (b) $Lifetime_{50}$}
+  \label{Figures/ch4/R3/LT}
+\end{figure}
 
 
-As highlighted by figures~\ref{Figures/ch4/R3/LT95} and \ref{Figures/ch4/R3/LT50}, the network lifetime obviously increases when the size of the network increases, with DiLCO-16 protocol and DiLCO-32 protocol which lead to maximize the lifetime of the network compared with other approaches. 
+As highlighted by Figures~\ref{Figures/ch4/R3/LT}(a) and \ref{Figures/ch4/R3/LT}(b), the network lifetime obviously increases when the size of the network increases, with DiLCO-16 protocol and DiLCO-32 protocol which lead to maximize the lifetime of the network compared with other approaches. 
 By choosing the best suited nodes, for each period, by optimizing the coverage and lifetime of the network to cover the area of interest and by letting the other ones sleep in order to be used later in next periods, DiLCO-16 protocol and DiLCO-32 protocol efficiently prolong the network lifetime. 
 Comparison shows that DiLCO-16 protocol and DiLCO-32 protocol, which use distributed optimization over the subregions, are the best ones because they are robust to network disconnection during the network lifetime as well as they consume less energy in comparison with other approaches. 
 %It also means that distributing the algorithm in each node and subdividing the sensing field into many subregions, which are managed independently and simultaneously, is the most relevant way to maximize the lifetime of a network.
 By choosing the best suited nodes, for each period, by optimizing the coverage and lifetime of the network to cover the area of interest and by letting the other ones sleep in order to be used later in next periods, DiLCO-16 protocol and DiLCO-32 protocol efficiently prolong the network lifetime. 
 Comparison shows that DiLCO-16 protocol and DiLCO-32 protocol, which use distributed optimization over the subregions, are the best ones because they are robust to network disconnection during the network lifetime as well as they consume less energy in comparison with other approaches. 
 %It also means that distributing the algorithm in each node and subdividing the sensing field into many subregions, which are managed independently and simultaneously, is the most relevant way to maximize the lifetime of a network.