]> AND Private Git Repository - ThesisAli.git/blobdiff - CHAPITRE_06.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
update by ali
[ThesisAli.git] / CHAPITRE_06.tex
old mode 100755 (executable)
new mode 100644 (file)
index 047a372..31e696c
@@ -7,6 +7,7 @@
 \chapter{Perimeter-based Coverage Optimization to Improve Lifetime in Wireless Sensor Networks}
 \label{ch6}
 
 \chapter{Perimeter-based Coverage Optimization to Improve Lifetime in Wireless Sensor Networks}
 \label{ch6}
 
+\iffalse
 
 \section{Summary}
 \label{ch6:sec:01}
 
 \section{Summary}
 \label{ch6:sec:01}
@@ -26,6 +27,33 @@ sensors' activities.  Extensive simulation experiments have been performed using
 OMNeT++, the  discrete event simulator, to  demonstrate that PeCO  can
 offer longer lifetime coverage for WSNs in comparison with some other protocols.
 
 OMNeT++, the  discrete event simulator, to  demonstrate that PeCO  can
 offer longer lifetime coverage for WSNs in comparison with some other protocols.
 
+
+\fi
+
+
+\section{Introduction}
+\label{ch6:sec:01}
+
+The continuous progress in Micro Electro-Mechanical Systems (MEMS) and
+wireless communication hardware  has given rise to the opportunity to use large
+networks of tiny sensors, called Wireless Sensor Networks (WSN)~\cite{ref1,ref223}, to fulfill monitoring tasks. The features of a WSN made it suitable for a wide
+range of application  in areas such as business,  environment, health, industry,
+military, and so on~\cite{ref4}. These large number of applications have led to different design, management, and operational challenges in WSNs. The challenges become harder with considering into account the main limited capabilities of the sensor nodes such memory, processing, battery life,  bandwidth, and short radio ranges. One important feature that distinguish the WSN from the other types of wireless networks is the provision of the sensing capability for the sensor nodes \cite{ref224}.
+
+The sensor node consumes some energy both in performing the sensing task and in transmitting the sensed data to the sink. Therefore, it is required to activate as less number as possible of sensor nodes that can monitor the whole area of interest so as to reduce the data volume and extend the network lifetime. The sensing coverage is the most important task of the WSNs since sensing unit of the sensor node is responsible for measuring physical,  chemical, or  biological  phenomena in the sensing field. The main challenge of any sensing coverage problem is to discover the redundant sensor node and turn off those nodes in WSN \cite{ref225}. The redundant sensor node is a node whose sensing area is covered by its active neighbors. In previous works, several approaches are used to find out the redundant node such as Voronoi diagram method, sponsored sector, crossing coverage, and perimeter coverage. 
+
+In this chapter,  we propose such an approach called Perimeter-based Coverage Optimization
+protocol (PeCO). The PeCO protocol merges between two energy efficient mechanisms, which are used the main advantages of the centralized and distributed approaches and avoids the most of their disadvantages. An energy-efficient activity scheduling mechanism based new optimization model is performed by each leader in the subregions. This optimization model is based on the perimeter coverage model in order to producing the optimal cover set of active sensors, which are taken the responsibility of sensing during the current period. 
+
+
+The rest of the chapter is  organized as follows. The next section is devoted to the PeCO protocol description and section~\ref{ch6:sec:03} focuses on the
+coverage model formulation which is used  to schedule the activation  of sensor
+nodes based on perimeter coverage model.  Section~\ref{ch6:sec:04}  presents simulations
+results and discusses the comparison  with other approaches. Finally, concluding
+remarks   are  drawn in section~\ref{ch6:sec:05}.
+
+
+
 \section{The PeCO Protocol Description}
 \label{ch6:sec:02}
 
 \section{The PeCO Protocol Description}
 \label{ch6:sec:02}
 
@@ -522,7 +550,7 @@ not ineffective for the smallest network sizes.
 
 
 \section{Conclusion}
 
 
 \section{Conclusion}
-\label{ch6:sec:04}
+\label{ch6:sec:05}
 
 In this chapter, we have studied the problem of  Perimeter-based Coverage Optimization in
 WSNs. We have designed  a new protocol, called Perimeter-based  Coverage Optimization, which
 
 In this chapter, we have studied the problem of  Perimeter-based Coverage Optimization in
 WSNs. We have designed  a new protocol, called Perimeter-based  Coverage Optimization, which