each round of the sensing phase. Each sensing phase is itself divided into $T$ rounds and for each round a set of sensors (a cover set) is responsible for the sensing task.
%Each sensor node in the subregion will receive an ActiveSleep packet from leader, informing it to stay awake or to go to sleep for each round of the sensing phase.
Algorithm~\ref{alg:MuDiLCO}, which will be executed by each node at the beginning of a period, explains how the ActiveSleep packet is obtained. In this way, a multiround optimization process is performed during each
-period after Information~Exchange and Leader~Election phases, in order to produce $T$ cover sets that will take the mission of sensing for $T$ rounds.
+period after Information~Exchange and Leader~Election phases, in order to produce $T$ cover sets that will take the mission of sensing for $T$ rounds. \textcolor{blue}{The flow chart of MuDiLCO protocol that executed in each sensor node is presented in \ref{flow5}.}
+
+\begin{figure}[ht!]
+\centering
+\includegraphics[scale=0.50]{Figures/ch5/Algo2.png} % 70mm
+\caption{The flow chart of MuDiLCO protocol.}
+\label{flow5}
+\end{figure}
%This protocol minimizes the impact of unexpected node failure (not due to batteries running out of energy), because it works in periods. On the one hand, if a node failure is detected before making the decision, the node will not participate during this phase. On the other hand, if the node failure occurs after the decision, the sensing task of the network will be temporarily affected: only during the period of sensing until a new period starts.