]> AND Private Git Repository - ThesisAli.git/blobdiff - CHAPITRE_02.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
Update by Ali
[ThesisAli.git] / CHAPITRE_02.tex
index fdd5ded8fe412ddf56b28ac0c4ac19c02ae89d4d..a80641a6416decd02de006dc07d1ba0e016a8038 100644 (file)
@@ -164,7 +164,7 @@ GAF is developed by Xu et al. \cite{GAF}, it uses geographic location informatio
 \label{gaf1}
 \end{figure}
 
-For two adjacent squares grids, (for example, A and B in figure~\ref{gaf1}) all sensor nodes inside A can communicate with sensor nodes inside B and vice versa. Therefore, all the sensor nodes are equivalent from the point of view the routing. The size of the fixed grid is based on the radio communication range $R_c$. It is supposed that the fixed grid is square with $r$ units on a side as shown in figure~\ref{gaf1}. The distance between the farthest sensor nodes in two adjacent squares, such as B and C in figure~\ref{gaf1}, should not be greater than the radio communication range $R_c$. For instance, the sensor node \textbf{2} of grid B can communicate with the sensor node \textbf{5} of square grid C. Thus, 
+For two adjacent squares grids, (for example, A and B in Figure~\ref{gaf1}) all sensor nodes inside A can communicate with sensor nodes inside B and vice versa. Therefore, all the sensor nodes are equivalent from the point of view the routing. The size of the fixed grid is based on the radio communication range $R_c$. It is supposed that the fixed grid is square with $r$ units on a side as shown in Figure~\ref{gaf1}. The distance between the farthest sensor nodes in two adjacent squares, such as B and C in Figure~\ref{gaf1}, should not be greater than the radio communication range $R_c$. For instance, the sensor node \textbf{2} of grid B can communicate with the sensor node \textbf{5} of square grid C. Thus, 
 
 
 \begin{eqnarray}
@@ -202,7 +202,7 @@ one sensor node (based on the remaining energy of sensor nodes inside the fixed
 DESK is a novel distributed heuristic to ensure that the energy consumption among the sensors is balanced  and the lifetime  maximized  while  the coverage  requirement is satisfied~\cite{DESK}. This heuristic  works in  rounds, it requires  only  one-hop neighbor information, and each  sensor decides its status (Active or  Sleep) based on the perimeter coverage model from~\cite{ref133}. 
 
 %DESK is based on the result from \cite{ref133}. 
-In DESK \cite{ref133}, the whole area is K-covered if and only if the perimeters of all sensors are K-covered. The coverage level of a sensor $s_i$ is determined by calculating the angle corresponding to the arc that each of its neighbors covers its perimeter. Figure~\ref{figp}~(a) illuminates such arcs whilst Figure~\ref{figp}~(b) shows the angles corresponding with those arcs in the range [0,2$ \pi $]. According to figure~\ref{figp}~(a) and (b), the coverage level of sensor $s_i$ can be calculated as follows.
+In DESK \cite{ref133}, the whole area is K-covered if and only if the perimeters of all sensors are K-covered. The coverage level of a sensor $s_i$ is determined by calculating the angle corresponding to the arc that each of its neighbors covers its perimeter. Figure~\ref{figp}~(a) illuminates such arcs whilst Figure~\ref{figp}~(b) shows the angles corresponding with those arcs in the range [0,2$ \pi $]. According to Figure~\ref{figp}~(a) and (b), the coverage level of sensor $s_i$ can be calculated as follows.
 %via traversing the range from 0 to  2$ \pi $.
 For each sensor $s_j$ such that $d(s_i,s_j)$ $<$ $2R_s$, we calculate the angle of $s_i$'s arc, denoted by [$\alpha_{j,L}$, $\alpha_{j,R}$], which is perimeter covered by $s_j$, where $\alpha= arccos(d(s_i, s_j)/2R_s)$ and $d(s_i,s_j)$ is the Euclidean distance between $s_i$ and $s_j$. After that, we locate the points $\alpha_{j,L}$ and $\alpha_{j,R}$ of each neighboring sensor $s_j$ of $s_i$ on the line segment $[0, 2\pi]$. These points are sorted in ascending order into a list L. We traverse the line segment from 0 to $2\pi$ by visiting each element in the sorted list L from the left to the right and determine the perimeter coverage of $s_i$. Whenever an element $\alpha_{j,L}$ is traversed, the level of perimeter coverage should be increased by one. Whenever an element $\alpha_{j,R}$ is traversed, the level of perimeter coverage should be decreased by one. 
 
@@ -234,7 +234,6 @@ w_{i} = \left \{
   \dfrac{\eta}{n_i^\alpha l(e_i,r_i)^\beta} * W + z & \mbox{if $e_i \geq e_{threshold}$} \\
   W & \mbox{otherwise,}\\
 \end{array} \right.
-%\label{eq12} 
 \notag
 \end{equation} 
 
@@ -346,9 +345,9 @@ check if its $n_i$ is decreased to 0 or not. If $n_i$ of a sensor node is 0 (i.e
 
 & \tiny  X. Deng et al. (2005)~\cite{ref133}  & \OK &   & \OK &  & \OK &  & \OK &  & \OK &  &  &  &\\
 
-&\textbf{\textcolor{red}{ \tiny DiLCO Protocol (2014)}}                  &  \textbf{\textcolor{red}{\OK}}   &   & \textbf{\textcolor{red}{\OK}}   &   &   & \textbf{\textcolor{red}{\OK}}  & \textbf{\textcolor{red}{\OK}}   &   & \textbf{\textcolor{red}{\OK}} &   &\textbf{\textcolor{red}{\OK}}  &    &  \\
+&\textbf{\textcolor{red}{ \tiny DiLCO Protocol (2015)}}                  &  \textbf{\textcolor{red}{\OK}}   &   & \textbf{\textcolor{red}{\OK}}   &   &   & \textbf{\textcolor{red}{\OK}}  & \textbf{\textcolor{red}{\OK}}   &   & \textbf{\textcolor{red}{\OK}} &   &\textbf{\textcolor{red}{\OK}}  &    &  \\
 
-&\textbf{\textcolor{red}{ \tiny MuDiLCO Protocol (2014)}}    &  \textbf{\textcolor{red}{\OK}}   &   & \textbf{\textcolor{red}{\OK}}   &   &   & \textbf{\textcolor{red}{\OK}}  & \textbf{\textcolor{red}{\OK}}   &   & \textbf{\textcolor{red}{\OK}} & \textbf{\textcolor{red}{\OK}}  &\textbf{\textcolor{red}{\OK}}  &    &  \\
+&\textbf{\textcolor{red}{ \tiny MuDiLCO Protocol (2015)}}    &  \textbf{\textcolor{red}{\OK}}   &   & \textbf{\textcolor{red}{\OK}}   &   &   & \textbf{\textcolor{red}{\OK}}  & \textbf{\textcolor{red}{\OK}}   &   & \textbf{\textcolor{red}{\OK}} & \textbf{\textcolor{red}{\OK}}  &\textbf{\textcolor{red}{\OK}}  &    &  \\
 
 &\textbf{\textcolor{red}{ \tiny PeCO Protocol (2015)}}                  &  \textbf{\textcolor{red}{\OK}}   &   & \textbf{\textcolor{red}{\OK}}   &   &   & \textbf{\textcolor{red}{\OK}}  & \textbf{\textcolor{red}{\OK}}   &   & \textbf{\textcolor{red}{\OK}} &   &\textbf{\textcolor{red}{\OK}}  &    &  \\