]> AND Private Git Repository - ThesisAli.git/blobdiff - CHAPITRE_02.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
Update by Ali
[ThesisAli.git] / CHAPITRE_02.tex
index e84787c45d66f23875fd277b3d4d296e7ad698d5..b306630203b4b3ccf89e7abd6c670afc7d57e4d4 100755 (executable)
@@ -41,11 +41,12 @@ M. Cardei and J. Wu~\cite{ref113} have been surveyed the different coverage form
 From our point of view, the choice of non-disjoint or disjoint cover sets (sensors participate or not in many cover sets), coverage type ( area, target, or barrier), coverage ratio, coverage degree (how many sensors are required to cover a target or an area) can be added to the above list.
 
 
 From our point of view, the choice of non-disjoint or disjoint cover sets (sensors participate or not in many cover sets), coverage type ( area, target, or barrier), coverage ratio, coverage degree (how many sensors are required to cover a target or an area) can be added to the above list.
 
 
-Once a sensor nodes are deployed, a coverage algorithm is run to schedule the sensor nodes into cover sets so as to maintain sufficient coverage in the area of interest and extend the network lifetime. The WSN applications require (complete or partial) area coverage and complete target coverage. This chapter concentrates only on area coverage and target coverage problems because it is possible to transform the area coverage problem to target ( or point) coverage problem and vice versa. We exclude the barrier coverage problem from this discussion about the coverage problem because it is outside the scope of this dissertation. We have focused mainly on the area coverage problem. Therefore, we represent the sensing area of each sensor node in the sensing field as a set of  primary points and then achieving full area coverage by covering all the points in the sensing field. The ultimate goal of the area coverage problem is to choose the minimum number of sensor nodes to cover the whole sensing region and prolonging the lifetime of the WSN. 
+Once a sensor nodes are deployed, a coverage algorithm is run to schedule the sensor nodes into cover sets so as to maintain sufficient coverage in the area of interest and extend the network lifetime. The WSN applications require (complete or partial) area coverage and complete target coverage. This chapter concentrates only on area coverage and target coverage problems because it is possible to transform the area coverage problem to target ( or point) coverage problem and vice versa. We have excluded the barrier coverage problem from this discussion about the coverage problems because it is outside the scope of this dissertation. We have focused mainly on the area coverage problem. Therefore, we represent the sensing area of each sensor node in the sensing field as a set of  primary points and then achieving full area coverage by covering all the points in the sensing field. The ultimate goal of the area coverage problem is to choose the minimum number of sensor nodes to cover the whole sensing region and prolonging the lifetime of the WSN. 
 
 
-Many centralized and distributed coverage algorithms for activity scheduling have been proposed in the literature and based on different assumptions and objectives. In centralized algorithms, a central controller makes all decisions and distributes the results to sensor nodes. The centralized algorithms have the advantage of requiring very low processing power from the sensor nodes which have usually limited processing capabilities. Moreover, a recent study conducted in \cite{ref226} concludes that there is a threshold in terms of network size to switch from a localized to a centralized algorithm. 
+Many centralized and distributed coverage algorithms for activity scheduling have been proposed in the literature and based on different assumptions and objectives. In centralized algorithms, a central controller makes all decisions and distributes the results to sensor nodes. The centralized algorithms have the advantage of requiring very low processing power from the sensor nodes which have usually limited processing capabilities.  Indeed, the exchange of packets in large WSNs may consume a considerable amount
+of energy in a centralized approach compared to a distributed one. Moreover, centralized approaches usually suffer from the scalability and reliability problems, making them less competitive as the network size increases.
 
 
-In a distributed algorithms, on the other hand, the decision process is localized in each individual sensor node, and the only information from neighboring nodes are used for the activity decision. Compared to centralized algorithms, distributed algorithms reduce the energy consumption required for radio communication and detection accuracy whilst increase the energy consumption for computation. Overall, distributed algorithms are more suitable for large-scale networks, but it can not give optimal (or near-optimal) solution based only on local information.  Table~\ref{Table0:ch2} shows a comparison between the centralized coverage algorithms and the distributed coverage algorithms.
+In a distributed algorithms, on the other hand, the decision process is localized in each individual sensor node, and the only information from neighboring nodes are used for the activity decision. Compared to centralized algorithms, distributed algorithms reduce the energy consumption required for radio communication and detection accuracy whilst increase the energy consumption for computation. Overall, distributed algorithms are more suitable for large-scale networks, but it can not give optimal (or near-optimal) solution based only on local information. Moreover, a recent study conducted in \cite{ref226} concludes that there is a threshold in terms of network size to switch from a distributed to a centralized algorithm. Table~\ref{Table0:ch2} shows a comparison between the centralized coverage algorithms and the distributed coverage algorithms.
 
 
 \begin{table}[h]
 
 
 \begin{table}[h]
@@ -84,10 +85,34 @@ Several algorithms to retain the coverage and maximize the network lifetime were
 
 \section{Centralized Algorithms}
 \label{ch2:sec:02}
 
 \section{Centralized Algorithms}
 \label{ch2:sec:02}
-The major approach is to divide/organize the sensors into a suitable number of cover sets, where each set completely covers an interest region and to activate these cover sets successively. The centralized algorithms always provide nearly or close to the optimal solution since the algorithm has a global view of the whole network. Note that  centralized algorithms have the advantage of requiring very low  processing  power from  the sensor nodes,  which  usually have limited processing  capabilities. The main drawback of this kind of approach is its higher cost in communications, since the node that will make the decision needs information from all the sensor nodes. Moreover, centralized approaches usually suffer from the scalability problem, making them less competitive as the network size increases.
+The major idea of most centralized algorithms is to divide/organize the sensors into a suitable number of cover sets, where each set completely covers an interest region and to activate these cover sets successively. The centralized algorithms always provide optimal or near-optimal solution since the algorithm has a global view of the whole network. Energy-efficient centralized approaches differ according to several criteria \cite{ref113}, such as the coverage objective (target coverage or area coverage), the node deployment method (random or deterministic), and the heterogeneity of sensor nodes (common sensing range, common battery lifetime). 
 
 
+The first algorithms proposed in the literature consider that the cover sets are disjoint: a sensor  node  appears  in  exactly one of the generated cover sets~\cite{ref114,ref115,ref116}. For  instance,  Slijepcevic  and  Potkonjak \cite{ref116}   propose an algorithm, which allocates sensor nodes in mutually independent sets to monitor an area divided into  several fields.  Their algorithm builds  a cover  set by including in  priority the sensor  nodes, which cover  critical fields, that  is to  say, fields  that are  covered by  the smallest  number of sensors. The time complexity of  their heuristic is $O(n^2)$ where $n$ is the number of  sensors. M. Cardei et al.~\cite{ref227}, have suggested a graph coloring technique to achieve energy savings by organizing the sensor nodes into a maximum number of disjoint dominating sets, which are activated successively. They have defined the maximum disjoint dominating sets problem and they have produced a heuristic that computes the disjoint cover sets so as to monitor the area of interest. The dominating sets do not guarantee the coverage of the whole region of interest. Abrams et al.~\cite{ref114} designed  three  approximation algorithms  for a  variation of  the  set k-cover  problem, where  the objective is to partition the sensors into covers such that the number of covers that  include an area, summed over  all areas, is maximized.
+Their work builds upon previous work in~\cite{ref116} and the  generated cover sets do not provide complete coverage of the monitoring zone.
 
 
-The first algorithms proposed in the literature consider that the cover sets are disjoint: a sensor  node  appears  in  exactly one of the generated cover sets~\cite{ref114,ref115,ref116}. In the case of non-disjoint algorithms~\cite{ref117}, sensors may participate in more than one  cover set. In some cases, this may prolong the lifetime of the network in comparison  to the disjoint cover set algorithms, but designing  algorithms for  non-disjoint cover  sets generally  induces  a higher order  of complexity. Moreover, in  case of  a sensor's  failure, non-disjoint scheduling  policies are less resilient and reliable because a sensor may be involved in more than one cover sets.
+
+The authors in~\cite{ref115} proposed  a heuristic  to compute  the  disjoint  set covers  (DSC).  In order  to compute the maximum number of  covers, they first transform DSC into a maximum-flow problem, which  is then formulated  as a  mixed integer programming  problem (MIP).  Based on  the solution  of the  MIP, they design a heuristic to compute  the final number of covers. The results show  a slight  performance  improvement  in terms  of  the number  of produced  DSC in comparison  to~\cite{ref116}, but it incurs  higher execution  time due to  the complexity of  the mixed integer programming solving. Zorbas  et  al.  \cite{ref228}  presented  B\{GOP\},  a  centralized target coverage  algorithm  introducing   sensor   candidate  categorization depending on their  coverage status and the notion  of critical target to  call  targets   that  are  associated  with  a   small  number  of sensors. The total running time of their heuristic is $0(m n^2)$ where
+$n$ is the number of sensors  and $m$ the number of targets. Compared to    algorithm's    results of  Slijepcevic and    Potkonjak \cite{ref116},  their   heuristic  produces  more cover sets with a slight growth rate in execution time. More recently, Deschinkel and Hakem \cite{229} introduced  a near-optimal heuristic algorithm for solving the target coverage problem in WSN. The sensor nodes are organized into disjoint cover sets by the resolution an integer programming problem. Each cover set is capable of monitoring all the targets of the region of interest. Those covers sets are scheduled periodically. Their algorithm  able to construct the different cover sets in parallel. The results show that their algorithm achieves near-optimal solutions compared to the optimal ones obtained by the exact method.
+
+
+
+
+In the case of non-disjoint algorithms~\cite{ref117}, sensors may participate in more than one  cover set. In some cases, this may prolong the lifetime of the network in comparison  to the disjoint cover set algorithms, but designing  algorithms for  non-disjoint cover  sets generally  induces  a higher order  of complexity. Moreover, in  case of a sensor's  failure, non-disjoint scheduling  policies are less resilient and reliable because a sensor may be involved in more than one cover sets. For instance,  Cardei et al.~\cite{ref167}
+present a  linear programming (LP)  solution and a greedy  approach to
+extend the  sensor network lifetime  by organizing the sensors  into a
+maximal  number of  non-disjoint cover  sets. Simulation  results show
+that by allowing sensors to  participate in multiple sets, the network
+lifetime increases compared with related work~\cite{ref115}.
+    
+    
+   
+    
+    
+    
+    
+    
+    
+    
     
 In~\cite{ref118}, the authors have considered a linear programming approach to select the minimum  number of working sensor nodes, in order to preserve a  maximum coverage and to extend the lifetime of the network.  
 
     
 In~\cite{ref118}, the authors have considered a linear programming approach to select the minimum  number of working sensor nodes, in order to preserve a  maximum coverage and to extend the lifetime of the network.