-lifetime increases compared with related work~\cite{ref115}. The authors in~\cite{ref148}, addressed the problem of minimum cost area coverage in which full coverage is performed by using the minimum number of sensors for an arbitrary geometric shape region. A geometric solution to the minimum cost coverage problem under a deterministic deployment is proposed. The probabilistic coverage solution which provides a relationship between the probability of coverage and the number of randomly deployed sensors in an arbitrarily-shaped region is suggested. The authors are clarified that with a random deployment about seven times more nodes are required to supply full coverage. The work in~\cite{ref144} addressed the area coverage problem by proposing a geometrically based activity scheduling scheme, named GAS, to fully cover the area of interest in WSNs. The authors deal with a small area, called target area coverage, which can be monitored by a single sensor instead of area coverage, which focuses on a large area that should be monitored by many sensors cooperatively. They explained that GAS is capable to monitor the target area by using a few sensors as possible and it can produce as many cover sets as possible. A novel area coverage method to divide the sensors of the WSN is called node coverage grouping (NCG) is suggested~\cite{ref147}. The sensors in the connectivity group are within sensing range of each other, and the data collected by them in the same group are supposed to be similar. They are proved that dividing N sensors via NCG into connectivity groups is an NP-hard problem. So, a heuristic algorithm of NCG with time complexity of $O(n^3)$ is proposed.
-For some applications, such as monitoring an ecosystem with extremely diversified environment, It might be premature assumption that sensors near to each other sense similar data. The problem of k-coverage over the area of interest in WSNs was addressed in~\cite{ref152}. It is mathematically formulated and the spatial sensor density for full k-coverage is determined. The relation between the communication range and the sensing range is constructed by this work to retain the k-coverage and connectivity in WSN. After that, a four configuration protocols have proposed for treating the k-coverage in WSNs. Simulation results show that their protocols outperform an existing distributed k-coverage configuration protocol. The work that presented in~\cite{ref151} solved the area coverage and connectivity problem in sensor networks in an integrated way. The network lifetime is divided into a fixed number of rounds. A coverage bitmap of sensors of the domain has been generated in each round and based on this bitmap, it has been decided which sensors stay active or turn it to sleep. They checked the connection of the graph via laplacian of the adjacency graph of active sensors in each round. The generation of coverage bitmap by using Minkowski technique, the network is able to providing the desired ratio of coverage. They defined the connected coverage problem as an optimization problem and a centralized genetic algorithm is used to find the solution.
+lifetime increases compared with related work~\cite{ref115}. The authors in~\cite{ref148}, address the problem of minimum cost area coverage in which full coverage is performed by using the minimum number of sensors for an arbitrary geometric shape region. A geometric solution to the minimum cost coverage problem under a deterministic deployment is proposed. The probabilistic coverage solution which provides a relationship between the probability of coverage and the number of randomly deployed sensors in an arbitrarily-shaped region is suggested.
+%The authors explained that with a random deployment about seven times more nodes are required to supply full coverage compared to deterministic deployment.
+The work in~\cite{ref144} address the area coverage problem by proposing a Geometrically based Activity Scheduling scheme, named GAS, to fully cover the area of interest in WSNs. The authors deal with a small area, called target area coverage, which can be monitored by a single sensor instead of area coverage, which focuses on a large area that should be monitored by many sensors cooperatively. They explain that GAS is capable to monitor the target area by using the fewest number of sensors and it can produce as many cover sets as possible. A novel area coverage method to divide the sensors called Node Coverage Grouping (NCG) is suggested~\cite{ref147}. The sensors in the connectivity group are within sensing range of each other and the data collected by those in the same group are supposed to be similar. They prove that dividing N sensors via NCG into connectivity groups is an NP-hard problem. So, a heuristic algorithm of NCG with time complexity of $O(n^3)$ is proposed.
+For some applications, such as monitoring an ecosystem with extremely diversified environment, it might be a premature assumption that sensors near to each other sense similar data. The problem of k-coverage over the area of interest in WSNs is addressed in~\cite{ref152}. It is mathematically formulated and the spatial sensor density for full k-coverage is determined. The relation between the communication range and the sensing range is constructed by this work to retain the k-coverage and connectivity in WSN. After that, four configuration protocols are proposed for treating the k-coverage in WSNs. Simulation results show that their protocols outperform an existing distributed k-coverage configuration protocol. The work presented in~\cite{ref151} solves the area coverage and connectivity problem in sensor networks in an integrated way. The network lifetime is divided into a fixed number of rounds. A coverage bitmap of sensors of the domain is generated in each round and based on this bitmap, it is decided which sensors stay active or go to sleep. They check the connection of the graph via laplacian of the adjacency graph of active sensors in each round. %The generation of coverage bitmap by using Minkowski technique, the network is able to providing the desired ratio of coverage.
+They define the connected coverage problem as an optimization problem and a centralized genetic algorithm is used to find the solution.
+
+Recent studies show an increasing interest in the use of exact schemes to solve optimization problems in WSNs \cite{ref230,ref231,ref121,ref122,ref120}. Column Generation (CG) has been widely used to address different versions of Maximum-network Lifetime Problem (MLP). CG decomposes the problem into a Restricted Master Problem (RMP) and a Pricing Subproblem (PS). The former maximizes lifetime using an incomplete set of columns and the latter is used to identify new profitable columns. A. Rossi et al.~\cite{ref121} introduce an efficient implementation of a genetic algorithm based on CG to extend the lifetime and maximize target coverage in wireless sensor networks under bandwidth constraints. The authors show that the use of metaheuristic methods to solve PS in the context of CG allows to obtain optimal solutions quite fast and to produce high-quality solutions when the algorithm is stopped before returning an optimal solution. More recently, F. Castano et al. \cite{ref120} address the maximum network lifetime and the target coverage problem in WSNs with connectivity and coverage constraints. They consider two cases to schedule the activity of a set of sensor nodes, keeping them connected while network lifetime is maximized. First, the full coverage of the targets is required, second only a fraction of the targets has to be monitored at any instant of time. They propose an exact approach based on column generation boosted by a Greedy Randomized Adaptive Search Procedure (GRASP) and a Variable Neighborhood Search (VNS) to address both of these problems. Finally, a multiphase framework combining these two approaches is constructed sequentially using these two heuristics at each iteration of the column generation algorithm. The results show that combining the two heuristic methods enhances the results significantly.
+
+More recently, the authors in~\cite{ref118} consider an area coverage optimization algorithm based on linear programming approach to select the minimum number of working sensor nodes, in order to preserve a maximum coverage and to extend the lifetime of the network. The experimental results show that linear programming can provide a fewest number of active nodes and maximize the network lifetime coverage. M. Rebai et al.~\cite{ref141}, formulate the problem of full grid area coverage problem using two integer linear programming models: the first, is in model that takes into account only the overall coverage constraint; the second, both the connectivity and the full grid coverage constraints are taken into consideration. This work does not consider the energy constraint. H. Cheng et al.~\cite{ref119} define a heuristic area coverage algorithm called Cover Sets Balance (CSB), which chooses a set of active nodes using the tuple (data coverage range, residual energy). Then, they introduce a new Correlated Node Set Computing (CNSC) algorithm to find the correlated node set for a given node. After that, they propose a High Residual Energy First (HREF) node selection algorithm to minimize the number of active nodes. X. Liu et al.~\cite{ref143} explain that in some applications of WSNs such as Structural Health Monitoring (SHM) and volcano monitoring, the traditional coverage model which is a geographic area defined for individual sensors is not always valid. For this reason, they define a generalized area coverage model, which is not required to have the coverage area of individual nodes, but only based on a function deciding whether a set of sensor nodes is capable of satisfy the requested monitoring task for a certain area. They propose two approaches for dividing the deployed nodes into suitable cover sets.