-In the last years, extensive researches have been focused on energy harvesting and wireless charging techniques. These solutions are representing alternate energy sources to recharge wireless sensor batteries without human intervention and instead of depending on the limited power supplied by a typical batteries~\cite{ref91,ref59}. In energy harvesting, several sources of environmental energy have been developed so as to enable the wireless sensors to acquire energy from the surrounding environment like solar, wind energy, vibration based energy harvesting, radio signals for scavenging RF power, Thermoelectric generators, and shoe-mounted piezoelectric generator to power artificial organs~\cite{ref59}. In wireless charging, the wireless power can be transmitted between the devices without requiring to the connection between the transmitter and the receiver. These techniques are participating in increasing the the availability of WSNs and prolonging the network lifetime. Wireless charging in WSNs can be performed by using two manners: magnetic resonant coupling and electromagnetic radiation~\cite{ref22}.
+
+\indent In the last years, extensive researches have been focused on energy harvesting and wireless charging techniques. These solutions represent alternate energy sources to recharge wireless sensor batteries without human intervention and instead of depending on the limited power supplied by a typical batteries~\cite{ref91,ref59}.
+
+\subsubsection{Energy Harvesting:} In energy harvesting, several sources of environmental energy have been developed so as to enable the wireless sensors to acquire energy from the surrounding environment like solar, wind energy, vibration based energy harvesting, radio signals for scavenging RF power, Thermoelectric generators, and shoe-mounted piezoelectric generator to power artificial organs~\cite{ref59}.
+
+\subsubsection{Wireless Charging:}In wireless charging, the wireless power can be transmitted between the devices without requiring to the connection between the transmitter and the receiver. These techniques are participating in increasing the the availability of WSNs and prolonging the network lifetime. Wireless charging in WSNs can be performed by using two manners: magnetic resonant coupling and electromagnetic radiation~\cite{ref22}.
+
+
+\subsection{Radio Optimization:}
+
+\indent In wireless sensor node, the radio is the most energy-consuming unit for draining the battery power. Extensive researches have been focused on decreasing the power depletion due to wireless communication by means of optimizing the radio parameters such as: coding and modulation schemes; transmission Power and antenna
+direction; and cognitive radio and Cooperative communications schemes~\cite{ref22}.
+
+\subsection{Relay nodes and Sink Mobility:}
+
+\indent The relay nodes placement and the mobility of the sink can be considered as energy-efficient strategies, which are used to minimize the consumption of the energy and extend the lifetime of WSNs.
+%\begin{enumerate} [(I)]
+\subsubsection{Relay node placement:}
+In WSN, some wireless sensor nodes in a certain region may be died and this creates a hole in the WSN. This problem can be solved by placing the wireless sensor nodes in sensing field using optimal distribution or by deploying a small number of relay wireless sensor nodes with a powerful capabilities whose major goal is the communication with other wireless sensor nodes or relay nodes~\cite{ref52}. This solution can enhance the power balancing and avoiding the overloaded wireless sensor nodes in a particular region in WSN.
+
+\subsubsection{Sink Mobility:}
+In WSNs includes a static sink, the wireless sensor nodes, which are near the sink drain their power more rapidly compared with other sensor nodes that lead to WSN disconnection and limited network lifetime~\cite{ref53}. Sending all the data in WSN to the sink maximizes the overload on the wireless sensor nodes close to sink. In order to overcome this problem and prolong the network lifetime, it is necessary to use a mobile sink to move within the area of WSN so as to collect the sensory data from the static sensor nodes over a single hop communication. The mobile sink avoids the multi-hop communication and conserves the energy at the static sensor nodes close to the base station, extending the lifetime of WSN~\cite{ref54,ref55}.
+
+%\end{enumerate}
+
+