-The work that presented in~\cite{ref151} solved the coverage and connectivity problem in sensor networks in
-an integrated way. The network lifetime is divided in a fixed number of rounds. A coverage bitmap of sensors of the domain has been generated in each round and based on this bitmap, it has been decided which sensors
-stay active or turn it to sleep. They checked the connection of the graph via laplacian of adjancy graph of active sensors in each round. the generation of coverage bitmap by using Minkowski technique, the network is able to providing the desired ratio of coverage. They have been defined the connected coverage problem as an optimization problem and a centralized genetic algorithm is used to find the solution.
+In this dissertation, the sensing field is divided into smaller subregions using divide-and-conquer method. The division continues until the distance between each two sensors inside the subregion is 3 or 2 hops maximum. This division makes our protocols more scalable for large networks, less energy consumer for communication, less processing power for decision, and more reliable against network failure. Our proposed protocols are distributed on the sensor nodes of the subregions. The protocols in each subregion work in independent and simultaneous way with the protocols in the other subregions. If the network is disconnected in one subregion, it will not affect the other subregions of the sensing field. There is no a fixed sensor node in the subregion for executing the optimization algorithm. Each period of the network lifetime, the sensor nodes in the subregion cooperate in order to select a sensor node to execute the optimization algorithm according to a predefined priority metrics. The resulted local optimal schedule of optimization algorithm is applied within the subregion. The elected sensor node sends a packet to every sensor within the subregion to inform him to stay active or sleep during this period. Each optimization algorithm in a subregion provides locally optimal solution, so the solution for all the sensing field is near-optimal.
+
+Several algorithms to retain the coverage and maximize the network lifetime were proposed in~\cite{ref113,ref101,ref103,ref105}. Table~\ref{Table1:ch2} summarizes the main characteristics of some coverage approaches in previous literatures. In table~\ref{Table1:ch2}, the "SET K-COVER" characteristic refers to the maximum number of disjoint or non-disjoint sets of sensors such that each set cover can assure the coverage for the whole region. The K-COVER algorithm provides a solution with K cover sets in each execution. The k-coverage characteristic refers to that every point inside the monitored area is always covered by at least k active sensors.
+
+
+
+\section{Centralized Algorithms}
+\label{ch2:sec:02}
+The major idea of most centralized algorithms is to divide/organize the sensors into a suitable number of cover sets, where each set completely covers an interest region and to activate these cover sets successively. The centralized algorithms always provide optimal or near-optimal solution since the algorithm has a global view of the whole network. Energy-efficient centralized approaches differ according to several criteria \cite{ref113}, such as the coverage objective (target coverage or area coverage), the node deployment method (random or deterministic), and the heterogeneity of sensor nodes (common sensing range, common battery lifetime).
+
+The first algorithms proposed in the literature consider that the cover sets are disjoint: a sensor node appears in exactly one of the generated cover sets~\cite{ref114,ref115,ref116}. For instance, Slijepcevic and Potkonjak \cite{ref116} propose an algorithm, which allocates sensor nodes in mutually independent sets to monitor an area divided into several fields. Their algorithm builds a cover set by including in priority the sensor nodes, which cover critical fields, that is to say, fields that are covered by the smallest number of sensors. The time complexity of their heuristic is $O(n^2)$ where $n$ is the number of sensors. M. Cardei et al.~\cite{ref227}, suggest a graph coloring technique to achieve energy savings by organizing the sensor nodes into a maximum number of disjoint dominating sets, which are activated successively. They have defined the maximum disjoint dominating sets problem and they have produced a heuristic that computes the disjoint cover sets so as to monitor the area of interest. The dominating sets do not guarantee the coverage of the whole region of interest. Abrams et al.~\cite{ref114} design three approximation algorithms for a variation of the set k-cover problem, where the objective is to partition the sensors into covers such that the number of covers that include an area, summed over all areas, is maximized.
+Their work builds upon previous work in~\cite{ref116} and the generated cover sets do not provide complete coverage of the monitoring zone.
+
+
+The authors in~\cite{ref115} propose a heuristic to compute the Disjoint Set Covers (DSC). In order to compute the maximum number of covers, they first transform DSC into a maximum-flow problem, which is then formulated as a Mixed Integer Programming problem (MIP). Based on the solution of the MIP, they design a heuristic to compute the final number of covers. The results show a slight performance improvement in terms of the number of produced DSC in comparison to~\cite{ref116}, but it incurs higher execution time due to the complexity of the mixed integer programming solving. Zorbas et al. \cite{ref228} present B\{GOP\}, a centralized target coverage algorithm introducing sensor candidate categorization depending on their coverage status and the notion of critical target to call targets that are associated with a small number of sensors. The total running time of their heuristic is $0(m n^2)$ where
+$n$ is the number of sensors and $m$ the number of targets. Compared to algorithm's results of Slijepcevic and Potkonjak \cite{ref116}, their heuristic produces more cover sets with a slight growth rate in execution time. L. Liu et al.~\cite{ref150} formulate the maximum disjoint sets for maintaining target coverage and connectivity problem in WSN. They propose a graph theoretical framework to study the joint problem of connectivity and coverage in a WSN with random deployment of nodes with no restrictions on the sensing and communication ranges of nodes. They propose heuristic algorithms to find the suitable number of nodes to guarantee connectivity and coverage while maximizing network lifetime.
+%This work did not take into account the sensor node failure, which is an unpredictable event because the two solutions are full centralized algorithms.
+Y. Li et al.~\cite{ref142} present a framework with heuristic strategies to solve the area coverage problem. The framework converts any complete coverage problem to a partial coverage one with any coverage ratio. They execute a complete coverage algorithm to find full coverage sets with virtual radii and then transform to the coverage sets to a partial coverage sets by adjusting sensing radii . This framework has four strategies, two of them are designed for the network where the sensors have fixed sensing range and the other two are for the network where the sensors have adjustable sensing range. The properties of the algorithms can be maintained by this framework and the transformation process has a low execution time. The simulation results validate the efficiency of the four proposed strategies. More recently, Deschinkel and Hakem \cite{ref229} introduce a near-optimal heuristic algorithm for solving the target coverage problem in WSN. The sensor nodes are organized into disjoint cover sets, each capable of monitoring all the targets of the region of interest. %Those covers sets are scheduled periodically.
+Their algorithm is able to construct the different cover sets in parallel. The results show that their algorithm achieves near-optimal solutions compared to the optimal ones obtained by the resolution of an integer programming.
+%exact method.