-
-\subsection{Our Energy Consumption Model}
-In this dissertation, the coverage protocols have been used an energy consumption model proposed by~\cite{ref111} and based on \cite{ref112} with slight modifications. The energy consumption for sending/receiving the packets is added, whereas the part related to the sensing range is removed because we consider a fixed sensing range.
-For our energy consumption model, we refer to the sensor node Medusa~II which uses an Atmels AVR ATmega103L microcontroller~\cite{ref112}. The typical architecture of a sensor is composed of four subsystems: the MCU subsystem which is capable of computation, communication subsystem (radio) which is responsible for transmitting/receiving messages, the sensing subsystem that collects data, and the power supply which powers the complete sensor node
-\cite{ref112}. Each of the first three subsystems can be turned on or off depending on the current status of the sensor. Energy consumption
-(expressed in milliWatt per second) for the different status of the sensor is summarized in Table~\ref{table1}.
-
-\begin{table}[ht]
-\caption{The Energy Consumption Model}
-% title of Table
-\centering
-% used for centering table
-\begin{tabular}{|c|c|c|c|c|}
-% centered columns (4 columns)
- \hline
-%inserts double horizontal lines
-Sensor status & MCU & Radio & Sensing & Power (mW) \\ [0.5ex]
-\hline
-% inserts single horizontal line
-LISTENING & on & on & on & 20.05 \\
-% inserting body of the table
-\hline
-ACTIVE & on & off & on & 9.72 \\
-\hline
-SLEEP & off & off & off & 0.02 \\
-\hline
-COMPUTATION & on & on & on & 26.83 \\
-%\hline
-%\multicolumn{4}{|c|}{Energy needed to send/receive a 1-bit} & 0.2575\\
- \hline
-\end{tabular}
-
-\label{table1}
-% is used to refer this table in the text
-\end{table}
-
-For the sake of simplicity we ignore the energy needed to turn on the radio, to start up the sensor node, to move from one status to another, etc.
-Thus, when a sensor becomes active (i.e., it has already chosen its status), it can turn its radio off to save battery. The value of energy spent to send a 1-bit-content message is obtained by using the equation in ~\cite{ref112} to calculate the energy cost for transmitting messages and we propose the same
-value for receiving the packets. The energy needed to send or receive a 1-bit packet is equal to $0.2575~mW$.