\section{Architecture}
\label{ch1:sec:02}
-A typical WSN architecture consists in a set of a huge number of wireless sensor nodes, which are capable of sensing the surrounded physical phenomenon such as fire in the forest (see~figure~\ref{wsn}), and then send the sensed data to a sink node. One or more sinks in WSN are responsible for collecting and processing the received sensed data, and making them available through the Internet to the end-user.
+A typical WSN architecture consists in a set of a huge number of wireless sensor nodes, which are capable of sensing the surrounded physical phenomenon such as fire in the forest (see~Figure~\ref{wsn}), and then send the sensed data to a sink node. One or more sinks in WSN are responsible for collecting and processing the received sensed data, and making them available through the Internet to the end-user.
The basic element is a wireless sensor node that is composed of four major units~\cite{ref17,ref18}: sensing, computation, communication, and power.
%In addition, there are three optional units, which can be combined with the sensor node such as localization system, mobilizer, and power generator.
\end{enumerate}
-Furthermore, additional components can be incorporated into wireless sensor node according to the application requirements, such as a localization system, a power generator, and a mobilizer~\cite{ref17,ref19}. These components are showed by the dashed boxes in figure~\ref{twsn}.
+Furthermore, additional components can be incorporated into wireless sensor node according to the application requirements, such as a localization system, a power generator, and a mobilizer~\cite{ref17,ref19}. These components are showed by the dashed boxes in Figure~\ref{twsn}.
\begin{enumerate} [(I)]
\section{Applications}
\label{ch1:sec:04}
%\indent The fast development in WSNs has been led to study their different characteristics extensively. However, the WSN is concentrated on various applications.
-In this section, we describe different academic and commercial applications. A WSN can use various types of sensors such as \cite{ref17,ref19}: thermal, seismic, magnetic, visual, infrared, acoustic, and radar. These sensors are capable of observing a different physical conditions such as: temperature, humidity, pressure, speed, direction, movement, light, soil makeup, noise levels, presence or absence of certain kinds of objects, and mechanical stress levels on attached objects. Consequently, a wide range of WSN applications can be classified into five classes~\cite{ref22}, as shown in figure~\ref{WSNAP}.
+In this section, we describe different academic and commercial applications. A WSN can use various types of sensors such as \cite{ref17,ref19}: thermal, seismic, magnetic, visual, infrared, acoustic, and radar. These sensors are capable of observing a different physical conditions such as: temperature, humidity, pressure, speed, direction, movement, light, soil makeup, noise levels, presence or absence of certain kinds of objects, and mechanical stress levels on attached objects. Consequently, a wide range of WSN applications can be classified into five classes~\cite{ref22}, as shown in Figure~\ref{WSNAP}.
\begin{figure}[h!]
\centering
WSNs can be incorporated into military command, control, communication, computing, intelligence,
surveillance, reconnaissance, and targeting systems. It permits to estimate the unexpected events such as natural disasters and threats; military surveillance to the battlefield, enemy forces, battle damage, and targeting; and nuclear, biological, and chemical attack detection and reconnaissance~\cite{ref19}.
-\indent According to figure~\ref{WSNAP}, the public safety and military applications can be categorized into active intervention and passive supervision~\cite{ref22}. In active intervention systems, the wireless sensors are wore by the agents and the WSN devoted to the security of the team activities. During the work of the team, the leader will observe the agent's situation and the environmental factors. The main applications include emergency rescue teams, miners, and soldiers. In passive supervision systems, wireless static sensors are scattered over a large field in order to monitor a civil area or nuclear site for a longer time. These applications include surveillance and target tracking; emergency navigation; fire detection in a building; structural health monitoring; and natural disaster prevention such as in the case of tsunamis, eruptions or flooding.
+\indent According to Figure~\ref{WSNAP}, the public safety and military applications can be categorized into active intervention and passive supervision~\cite{ref22}. In active intervention systems, the wireless sensors are wore by the agents and the WSN devoted to the security of the team activities. During the work of the team, the leader will observe the agent's situation and the environmental factors. The main applications include emergency rescue teams, miners, and soldiers. In passive supervision systems, wireless static sensors are scattered over a large field in order to monitor a civil area or nuclear site for a longer time. These applications include surveillance and target tracking; emergency navigation; fire detection in a building; structural health monitoring; and natural disaster prevention such as in the case of tsunamis, eruptions or flooding.
\item \textbf{Transportation Systems Applications:}
\section{Energy-Efficient Mechanisms of a working WSN}
\label{ch1:sec:06}
-\indent The strong constraint on limiting wireless sensor nodes energy usage requires energy efficient mechanisms to prolong network lifetime. The energy efficient mechanisms can be classified into five categories~\cite{ref22}, as summarized in figure~\ref{emwsn}.
+\indent The strong constraint on limiting wireless sensor nodes energy usage requires energy efficient mechanisms to prolong network lifetime. The energy efficient mechanisms can be classified into five categories~\cite{ref22}, as summarized in Figure~\ref{emwsn}.
\begin{figure}[h!]
\centering
\includegraphics[scale=0.4]{Figures/ch1/WSN-M.eps}
\subsubsection{Wake up Scheduling Schemes}
-\indent This section describes the scheduling schemes from the point of view of schedule composition process and the framework of the wake-up schedule. In these scheduling schemes, the wake-up interval refers to the period of time at which the radio unit is turned on to send or receive packets. On the other hand, the sleep interval refers to a period of time at which the radio unit is turned off so as to save the energy of node. Some schemes divide the time into equal length durations of time and are called slotted schemes. Other schemes work with the time in a continuous way and are called unslotted schemes. The sleep and wake up intervals are defined for the unslotted schemes, whilst for the slotted schemes, these intervals are represented as multiple slots. A wake-up schedule represents a set of a wake-up and sleep intervals which are produced for one period. This schedule is replicated for each period and it can be changed by the wake-up scheduling scheme during the different periods of time. The final goal is to permit to exchange data among the wireless sensor nodes during the wake-up interval. As shown in figure~\ref{wsns}, the requirement for synchronization categorizes the wake-up scheduling into three categories~\cite{ref57}:
+\indent This section describes the scheduling schemes from the point of view of schedule composition process and the framework of the wake-up schedule. In these scheduling schemes, the wake-up interval refers to the period of time at which the radio unit is turned on to send or receive packets. On the other hand, the sleep interval refers to a period of time at which the radio unit is turned off so as to save the energy of node. Some schemes divide the time into equal length durations of time and are called slotted schemes. Other schemes work with the time in a continuous way and are called unslotted schemes. The sleep and wake up intervals are defined for the unslotted schemes, whilst for the slotted schemes, these intervals are represented as multiple slots. A wake-up schedule represents a set of a wake-up and sleep intervals which are produced for one period. This schedule is replicated for each period and it can be changed by the wake-up scheduling scheme during the different periods of time. The final goal is to permit to exchange data among the wireless sensor nodes during the wake-up interval. As shown in Figure~\ref{wsns}, the requirement for synchronization categorizes the wake-up scheduling into three categories~\cite{ref57}:
\begin{enumerate} [(I)]
\label{RDM}
\end{figure}
-\indent In this model, the radio consumes energy to execute the transmitter and the power amplifier. The receiver circuitry consumes energy to run the radio electronics, as described in figure~\ref{RDM}. The channel model can be either free space ($d^2$ power loss) or multipath fading ($d^4$ power loss), based on the distance between the transmitter and receiver. This power loss can be controlled by setting the power amplifier so that if the distance is less than a threshold ($d_0$), the free space ($\varepsilon_{fs}$) model is used (i.e., $\varepsilon_{amp}$ = $\varepsilon_{fs}$). Otherwise, the multipath ($\varepsilon_{mp}$) model is used (i.e., $\varepsilon_{amp}$ = $\varepsilon_{mp}$). Therefore, to transmit a K-bit packet across a distance d, the radio is
+\indent In this model, the radio consumes energy to execute the transmitter and the power amplifier. The receiver circuitry consumes energy to run the radio electronics, as described in Figure~\ref{RDM}. The channel model can be either free space ($d^2$ power loss) or multipath fading ($d^4$ power loss), based on the distance between the transmitter and receiver. This power loss can be controlled by setting the power amplifier so that if the distance is less than a threshold ($d_0$), the free space ($\varepsilon_{fs}$) model is used (i.e., $\varepsilon_{amp}$ = $\varepsilon_{fs}$). Otherwise, the multipath ($\varepsilon_{mp}$) model is used (i.e., $\varepsilon_{amp}$ = $\varepsilon_{mp}$). Therefore, to transmit a K-bit packet across a distance d, the radio is
\begin{equation}