-
-
-In the case of non-disjoint algorithms~\cite{ref117}, sensors may participate in more than one cover set. In some cases, this may prolong the lifetime of the network in comparison to the disjoint cover set algorithms, but designing algorithms for non-disjoint cover sets generally induces a higher order of complexity. Moreover, in case of a sensor's failure, non-disjoint scheduling policies are less resilient and reliable because a sensor may be involved in more than one cover sets.
-
-
-
-
-
-
-
-
-
-
-
-In~\cite{ref118}, the authors have considered a linear programming approach to select the minimum number of working sensor nodes, in order to preserve a maximum coverage and to extend the lifetime of the network.
-
-The work in~\cite{ref144} addressed the target area coverage problem by proposing a geometrically based activity scheduling scheme, named GAS, to fully cover the target area in WSNs. The authors deal with a small area (target area coverage), which can be monitored by a single sensor instead of area coverage, which focuses on a large area that should be monitored by many sensors cooperatively. They explained that GAS is capable to monitor the target area by using a few sensors as possible and it can produce as many cover sets as possible.
-
-A novel method to divide the sensors of the WSN is called node coverage grouping (NCG) suggested~\cite{ref147}. The sensors in the connectivity group are within sensing range of each other, and the data collected by them in the same group are supposed to be similar. They are proved that dividing N sensors via NCG into connectivity groups is an NP-hard problem. So, a heuristic algorithm of NCG with time complexity of $O(n^3)$ is proposed.
-For some applications, such as monitoring an ecosystem with extremely diversified environment, It might be premature assumption that sensors near to each other sense similar data.
-
-In~\cite{ref148}, the problem of minimum cost coverage in which full coverage is performed by using the minimum number of sensors for an arbitrary geometric shape region is addressed. a geometric solution to the minimum cost coverage problem under a deterministic deployment is proposed. The probabilistic coverage solution which provides a relationship between the probability of coverage and the number of randomly deployed sensors in an arbitrarily-shaped region is suggested. The authors are clarified that with a random deployment about seven times more nodes are required to supply full coverage.
-
-Li et al.~\cite{ref142} presented a framework to convert any complete coverage problem to a partial coverage one with any coverage ratio by means of executing a complete coverage algorithm to find a full coverage sets with virtual radii and transforming the coverage sets to a partial coverage sets by adjusting sensing radii. The properties of the original algorithms can be maintained by this framework and the transformation process has a low execution time.
-
-The problem of k-coverage in WSNs was addressed~\cite{ref152}. It mathematically formulated and the spatial sensor density for full k-coverage determined, where the relation between the communication range and the sensing range constructed by this work to retain the k-coverage and connectivity in WSN. After that, a four configuration protocols have proposed for treating the k-coverage in WSNs.
-
-Liu et al.~\cite{ref150} formulated maximum disjoint sets problem for retaining coverage and connectivity in WSN. Two algorithms are proposed for solving this problem: the heuristic algorithm and the network flow algorithm. This work did not take into account the sensor node failure, which is an unpredictable event because the two solutions are full centralized algorithms.
-
-Cheng et al.~\cite{ref119} have defined a heuristic algorithm called Cover Sets Balance (CSB), which chooses a set of active nodes using the tuple (data coverage range, residual energy). Then, they have introduced a new Correlated Node Set Computing (CNSC) algorithm to find the correlated node set for a given node. After that, they proposed a High Residual Energy First (HREF) node selection algorithm to minimize the number of active nodes so as to prolong the network lifetime.
-
-In~\cite{ref141}, the problem of full grid coverage is formulated using two integer linear programming models: the first, a model that takes into account only the overall coverage constraint; the second, both the connectivity and the full grid coverage constraints have taken into consideration. This work did not take into account the energy constraint.
-
-The work that presented in~\cite{ref151} solved the coverage and connectivity problem in sensor networks in an integrated way. The network lifetime is divided into a fixed number of rounds. A coverage bitmap of sensors of the domain has been generated in each round and based on this bitmap, it has been decided which sensors
-stay active or turn it to sleep. They checked the connection of the graph via laplacian of the adjacency graph of active sensors in each round. the generation of coverage bitmap by using Minkowski technique, the network is able to providing the desired ratio of coverage. They have been defined the connected coverage problem as an optimization problem and a centralized genetic algorithm is used to find the solution.
-
-The authors in~\cite{ref143} explained that in some applications of WSNs such as structural health monitoring (SHM) and volcano monitoring, the traditional coverage model which is a geographic area defined for individual sensors is not always valid. For this reason, they define a generalized coverage model, which is not need to have the coverage area of individual nodes, but only based on a function to determine whether a set of sensor nodes is capable of satisfy the requested monitoring task for a certain area. They have proposed two approaches to dividing the deployed nodes into suitable cover sets, which can be used to prolong the network lifetime.
-
-Various centralized methods based on column generation approaches have also been proposed in~\cite{ref120,ref121,ref122}.