]> AND Private Git Repository - ThesisAli.git/blobdiff - CHAPITRE_05.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
Update with Ali
[ThesisAli.git] / CHAPITRE_05.tex
index 5a39fd7049beed870d4b961bc854c9c0d7b671c7..6604d953d889c5bd08ffff8c178cb9b6503d5559 100644 (file)
@@ -41,11 +41,6 @@ mechanisms: subdividing the area of interest into several subregions (like a clu
 
 As can be seen in Figure~\ref{fig2},  our protocol  works in  periods fashion, where  each is  divided  into 4  phases: Information~Exchange,  Leader~Election, Decision, and Sensing. 
 %The information exchange among wireless sensor nodes is described in chapter 4, section \ref{ch4:sec:02:03:01}. The leader election in each subregion is explained in chapter 4, section \ref{ch4:sec:02:03:02}, 
-The difference with MuDiLCO in that the elected leader in each subregion is for each period. In the decision phase, each leader will solve an integer  program to select which  cover sets  will be activated in  the following  sensing phase  to cover the  subregion to  which it belongs.  The integer  program will produce $T$ cover sets,  one for each round. The leader will send an ActiveSleep  packet to each sensor in the subregion based on the algorithm's results, indicating if the sensor should be active or not in
-each round  of the  sensing phase. Each sensing phase is itself divided into $T$ rounds and for each round a set of sensors (a cover set) is responsible for the sensing task. 
-%Each sensor node in the subregion will receive an ActiveSleep packet from leader, informing it to stay awake or to go to sleep for  each round of the sensing  phase. 
-Algorithm~\ref{alg:MuDiLCO}, which will be  executed by each node at the beginning  of a period, explains  how the ActiveSleep packet is obtained. In this way, a multiround optimization  process is performed  during each
-period  after  Information~Exchange  and  Leader~Election phases,  in  order to produce $T$ cover sets that will take the mission of sensing for $T$ rounds.
 \begin{figure}[ht!]
 \centering \includegraphics[width=160mm]{Figures/ch5/GeneralModel.jpg} % 70mm  Modelgeneral.pdf
 \caption{MuDiLCO protocol.}
@@ -53,12 +48,6 @@ period  after  Information~Exchange  and  Leader~Election phases,  in  order to
 \end{figure} 
 
 
-%This protocol minimizes the impact of unexpected node failure (not due to batteries running out of energy), because it works in periods. On the one hand, if a node failure is detected before making the decision, the node will not participate during this phase. On the other hand, if the node failure occurs after the decision, the sensing  task of the network will be temporarily affected:  only during  the period of sensing until a new period starts.
-
-%The  energy consumption  and some other constraints  can easily  be  taken into account since the  sensors  can  update and  then  exchange their  information (including their residual energy) at the beginning of each period.  However, the pre-sensing  phases (Information  Exchange, Leader  Election, and  Decision) are energy  consuming for some  nodes, even  when they  do not  join the  network to monitor the area.
-
-
 \begin{algorithm}[h!]                
  % \KwIn{all the parameters related to information exchange}
 %  \KwOut{$winer-node$ (: the id of the winner sensor node, which is the leader of current round)}
@@ -99,6 +88,19 @@ period  after  Information~Exchange  and  Leader~Election phases,  in  order to
 
 \end{algorithm}
 
+The difference with MuDiLCO in that the elected leader in each subregion is for each period. In the decision phase, each leader will solve an integer  program to select which  cover sets  will be activated in  the following  sensing phase  to cover the  subregion to  which it belongs.  The integer  program will produce $T$ cover sets,  one for each round. The leader will send an ActiveSleep  packet to each sensor in the subregion based on the algorithm's results, indicating if the sensor should be active or not in
+each round  of the  sensing phase. Each sensing phase is itself divided into $T$ rounds and for each round a set of sensors (a cover set) is responsible for the sensing task. 
+%Each sensor node in the subregion will receive an ActiveSleep packet from leader, informing it to stay awake or to go to sleep for  each round of the sensing  phase. 
+Algorithm~\ref{alg:MuDiLCO}, which will be  executed by each node at the beginning  of a period, explains  how the ActiveSleep packet is obtained. In this way, a multiround optimization  process is performed  during each
+period  after  Information~Exchange  and  Leader~Election phases,  in  order to produce $T$ cover sets that will take the mission of sensing for $T$ rounds.
+
+
+%This protocol minimizes the impact of unexpected node failure (not due to batteries running out of energy), because it works in periods. On the one hand, if a node failure is detected before making the decision, the node will not participate during this phase. On the other hand, if the node failure occurs after the decision, the sensing  task of the network will be temporarily affected:  only during  the period of sensing until a new period starts.
+
+%The  energy consumption  and some other constraints  can easily  be  taken into account since the  sensors  can  update and  then  exchange their  information (including their residual energy) at the beginning of each period.  However, the pre-sensing  phases (Information  Exchange, Leader  Election, and  Decision) are energy  consuming for some  nodes, even  when they  do not  join the  network to monitor the area.
+
+
 
 
 
@@ -393,7 +395,7 @@ seconds (needed to solve optimization problem) for different values of $T$. The
 As expected,  the execution time increases  with the number of  rounds $T$ taken into account to schedule the sensing phase. The times obtained for $T=1,3$ or $5$ seem bearable, but for $T=7$ they become quickly unsuitable for a sensor node, especially when  the sensor network size increases.   Again, we can notice that if we want  to schedule the nodes activities for a  large number of rounds,
 we need to choose a relevant number of subregions in order to avoid a complicated and cumbersome optimization.  
 
-On the one hand, a large value  for $T$ permits to reduce the  energy overhead due  to the three  pre-sensing phases, on  the other hand  a leader  node may  waste a  considerable amount  of energy  to  solve the optimization problem. \\ \\ \\ \\ \\ \\ \\
+On the one hand, a large value  for $T$ permits to reduce the  energy overhead due  to the three  pre-sensing phases, on  the other hand  a leader  node may  waste a  considerable amount  of energy  to  solve the optimization problem. %\\ \\ \\ \\ \\ \\ \\
 
 \item {{\bf Network lifetime}}
 %\subsection{Network lifetime}