]> AND Private Git Repository - ThesisAli.git/blobdiff - CHAPITRE_04.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
Update by Ali
[ThesisAli.git] / CHAPITRE_04.tex
index c06ac21b250a65ed9c094abe77b0b9cd8b43a01d..07788db7d7e5875e673ddb9cc21c11eafad5766d 100644 (file)
@@ -8,25 +8,6 @@
 \label{ch4}
 
 
 \label{ch4}
 
 
-\iffalse
-\section{Summary}
-\label{ch4:sec:01}
-In this chapter, a Distributed Lifetime Coverage Optimization protocol (DiLCO) to maintain
-the coverage and to improve  the  lifetime  in  wireless sensor  networks  is
-proposed.   The  area of  interest  is first  divided  into  subregions using  a
-divide-and-conquer  method and  then the  DiLCO protocol  is distributed  on the
-sensor nodes  in each  subregion. The DiLCO  combines two  efficient techniques:
-leader election  for each subregion, followed by  an optimization-based planning
-of activity  scheduling decisions for  each subregion. The proposed  DiLCO works
-into rounds during which a small  number of nodes, remaining active for sensing,
-is selected to ensure coverage so as to maximize the lifetime of wireless sensor
-network.   Each  round  consists   of  four  phases:  (i)~Information  Exchange,
-(ii)~Leader Election, (iii)~Decision, and (iv)~Sensing.  The decision process is
-carried out  by a leader node,  which solves an integer  program.  Compared with
-some existing protocols, simulation results  show that the proposed protocol can
-prolong the network lifetime and improve the coverage performance effectively.
-
-\fi
 
 \section{Introduction}
 \label{ch4:sec:01}
 
 \section{Introduction}
 \label{ch4:sec:01}
@@ -350,7 +331,7 @@ $w_{U}$ & $|P|^2$
 % is used to refer this table in the text
 \end{table}
 
 % is used to refer this table in the text
 \end{table}
 
-Simulations with five  different node densities going from  50 to 250~nodes were
+Simulations with five different node densities going from  50 to 250~nodes were
 performed  considering  each  time  25~randomly generated  networks,  to  obtain
 experimental results  which are relevant. The  nodes are deployed on  a field of
 interest of $(50 \times 25)~m^2 $ in such a way that they cover the field with a
 performed  considering  each  time  25~randomly generated  networks,  to  obtain
 experimental results  which are relevant. The  nodes are deployed on  a field of
 interest of $(50 \times 25)~m^2 $ in such a way that they cover the field with a