-In this chapter, we have studied the problem of Perimeter-based Coverage Optimization in
-WSNs. We have designed a new protocol, called Perimeter-based Coverage Optimization, which
-schedules nodes' activities (wake up and sleep stages) with the objective of
-maintaining a good coverage ratio while maximizing the network lifetime. This
-protocol is applied in a distributed way in regular subregions obtained after
-partitioning the area of interest in a preliminary step. It works in periods and
-is based on the resolution of an integer program to select the subset of sensors
-operating in active status for each period. Our work is original in so far as it
-proposes for the first time an integer program scheduling the activation of
-sensors based on their perimeter coverage level, instead of using a set of
-targets/points to be covered. We have carried out several simulations to evaluate the proposed protocol. The simulation results show that PeCO is more energy-efficient than other approaches, with respect to lifetime, coverage ratio, active sensors ratio, and
-energy consumption.
-
-We plan to extend our framework so that the schedules are planned for multiple
-sensing periods.
+In this chapter, we have studied the problem of Perimeter-based Coverage Optimization in WSNs. We have designed a new protocol, called Perimeter-based Coverage Optimization, which schedules nodes' activities (wake up and sleep stages) with the objective of maintaining a good coverage ratio while maximizing the network lifetime. This protocol is applied in a distributed way in regular subregions obtained after partitioning the area of interest in a preliminary step. It works in periods and
+is based on the resolution of an integer program to select the subset of sensors operating in active status for each period. Our work is original because it proposes for the first time an integer program scheduling the activation of sensors based on their perimeter coverage level, instead of using a set of targets/points to be covered. We have carried out several simulations to evaluate the proposed protocol. The simulation results show that PeCO is more energy-efficient than other approaches, with respect to lifetime, coverage ratio, active sensors ratio, and energy consumption.
+
+%We plan to extend our framework so that the schedules are planned for multiple sensing periods. We also want to improve our integer program to take into account heterogeneous sensors from both energy and node characteristics point of views. Finally, it would be interesting to implement our protocol using a sensor-testbed to evaluate it in real world applications.
+
+