\item We design a protocol, called the Distributed Lifetime Coverage Optimization (DILCO) protocol, which maintains the coverage and improves the lifetime in WSNs. DILCO protocol is presented in chapter 4. It is an extension of our approach introduced in \cite{ref159}. In \cite{ref159}, the protocol is deployed over only two subregions. In the DILCO protocol, the area of interest is first divided into subregions using a divide-and-conquer algorithm and an activity scheduling for sensor nodes is then planned by the elected leader in each subregion. In fact, the nodes in a subregion can be seen as a cluster where each node sends sensing data to the cluster head or the sink node. Furthermore, the activities in a subregion/cluster can continue even if another cluster stops due to too many node failures. DiLCO protocol considers periods, where a period starts with a discovery phase to exchange information between sensors of the same subregion, in order to choose in a suitable manner a sensor node (the leader) to carry out the coverage strategy. In each subregion, the activation of the sensors for the sensing phase of the current period is obtained by solving an integer program. The resulting activation vector is broadcasted by the leader to every node of its subregion.
\item %We extend our work that explained in chapter 4 and present a generalized framework that can be applied to provide the cover sets of all rounds in each period.
\item We design a protocol, called the Distributed Lifetime Coverage Optimization (DILCO) protocol, which maintains the coverage and improves the lifetime in WSNs. DILCO protocol is presented in chapter 4. It is an extension of our approach introduced in \cite{ref159}. In \cite{ref159}, the protocol is deployed over only two subregions. In the DILCO protocol, the area of interest is first divided into subregions using a divide-and-conquer algorithm and an activity scheduling for sensor nodes is then planned by the elected leader in each subregion. In fact, the nodes in a subregion can be seen as a cluster where each node sends sensing data to the cluster head or the sink node. Furthermore, the activities in a subregion/cluster can continue even if another cluster stops due to too many node failures. DiLCO protocol considers periods, where a period starts with a discovery phase to exchange information between sensors of the same subregion, in order to choose in a suitable manner a sensor node (the leader) to carry out the coverage strategy. In each subregion, the activation of the sensors for the sensing phase of the current period is obtained by solving an integer program. The resulting activation vector is broadcasted by the leader to every node of its subregion.
\item %We extend our work that explained in chapter 4 and present a generalized framework that can be applied to provide the cover sets of all rounds in each period.