-\begin{table}[ht]
-\caption{Relevant parameters for network initialization.}
-% title of Table
-\centering
-% used for centering table
-\begin{tabular}{c|c}
-% centered columns (4 columns)
-\hline
-Parameter & Value \\ [0.5ex]
-
-\hline
-% inserts single horizontal line
-Sensing field & $(50 \times 25)~m^2 $ \\
-
-WSN size & 100, 150, 200, 250, and 300~nodes \\
-%\hline
-Initial energy & in range 500-700~Joules \\
-%\hline
-Sensing period & duration of 60 minutes \\
-$E_{th}$ & 36~Joules\\
-$R_s$ & 5~m \\
-%\hline
-$\alpha^j_i$ & 0.6 \\
-% [1ex] adds vertical space
-%\hline
-$\beta^j_i$ & 0.4
-%inserts single line
-\end{tabular}
-\label{table3}
-% is used to refer this table in the text
-\end{table}
-
-
-To obtain experimental results which are relevant, simulations with five
-different node densities going from 100 to 300~nodes were performed considering
-each time 25~randomly generated networks. The nodes are deployed on a field of
-interest of $(50 \times 25)~m^2 $ in such a way that they cover the field with a
-high coverage ratio. Each node has an initial energy level, in Joules, which is
-randomly drawn in the interval $[500-700]$. If its energy provision reaches a
-value below the threshold $E_{th}=36$~Joules, the minimum energy needed for a
-node to stay active during one period, it will no more participate in the
-coverage task. This value corresponds to the energy needed by the sensing phase,
-obtained by multiplying the energy consumed in active state (9.72 mW) with the
-time in seconds for one period (3600 seconds), and adding the energy for the
-pre-sensing phases. According to the interval of initial energy, a sensor may
-be active during at most 20 periods.
-
-
-The values of $\alpha^j_i$ and $\beta^j_i$ have been chosen to ensure a good
-network coverage and a longer WSN lifetime. We have given a higher priority to
-the undercoverage (by setting the $\alpha^j_i$ with a larger value than
-$\beta^j_i$) so as to prevent the non-coverage for the interval~$i$ of the
-sensor~$j$. On the other hand, we have assigned to
-$\beta^j_i$ a value which is slightly lower so as to minimize the number of active sensor nodes which contribute
-in covering the interval.
-
-We applied the performance metrics, which are described in chapter 3, section \ref{ch3:sec:04:04} in order to evaluate the efficiency of our approach. We used the modeling language and the optimization solver which are mentioned in chapter 3, section \ref{ch3:sec:04:02}. In addition, we employed an energy consumption model, which is presented in chapter 3, section \ref{ch3:sec:04:03}.
-
-
-\subsection{Simulation Results}
+\begin{equation}
+ \sum_{t=1}^{T} X_{t,j} \leq \lfloor {RE_{j}/E_{th}} \rfloor \hspace{6 mm} \forall j \in J, t = 1,\dots,T
+ \label{eq144}
+\end{equation}
+
+\begin{equation}
+X_{t,j} \in \lbrace0,1\rbrace, \hspace{10 mm} \forall j \in J, t = 1,\dots,T \label{eq17}
+\end{equation}
+
+\begin{equation}
+U_{t,p} \in \lbrace0,1\rbrace, \hspace{10 mm}\forall p \in P, t = 1,\dots,T \label{eq18}
+\end{equation}
+
+\begin{equation}
+ \Theta_{t,p} \geq 0 \hspace{10 mm}\forall p \in P, t = 1,\dots,T \label{eq178}
+\end{equation}
+
+
+
+\begin{itemize}
+\item $X_{t,j}$: indicates whether or not the sensor $j$ is actively sensing
+ during round $t$ (1 if yes and 0 if not);
+\item $\Theta_{t,p}$ - {\it overcoverage}: the number of sensors minus one that
+ are covering the primary point $p$ during round $t$;
+\item $U_{t,p}$ - {\it undercoverage}: indicates whether or not the primary
+ point $p$ is being covered during round $t$ (1 if not covered and 0 if
+ covered).
+\end{itemize}
+
+The first group of constraints indicates that some primary point $p$ should be
+covered by at least one sensor and, if it is not always the case, overcoverage
+and undercoverage variables help balancing the restriction equations by taking
+positive values. The constraint given by equation~(\ref{eq144}) guarantees that
+the sensor has enough energy ($RE_j$ corresponds to its remaining energy) to be
+alive during the selected rounds knowing that $E_{th}$ is the amount of energy
+required to be alive during one round.
+
+There are two main objectives. First, we limit the overcoverage of primary
+points in order to activate a minimum number of sensors. Second we prevent the
+absence of monitoring on some parts of the subregion by minimizing the
+undercoverage. The weights $W_\theta$ and $W_U$ must be properly chosen so as
+to guarantee that the maximum number of points are covered during each round.
+%% MS W_theta is smaller than W_u => problem with the following sentence
+In our simulations, priority is given to the coverage by choosing $W_{U}$ very
+large compared to $W_{\theta}$.
+
+
+
+
+
+\section{Experimental Study and Analysis}
+\label{ch5:sec:04}
+
+\subsection{Simulation Setup}
+\label{ch5:sec:04:01}
+We conducted a series of simulations to evaluate the efficiency and the
+relevance of our approach, using the discrete event simulator OMNeT++
+\cite{ref158}. We performed the optimization in the same manner than in chapter 4, considering the same energy model. The simulation parameters are summarized in Table~\ref{tablech4}. Each experiment for a network is run over 25~different random topologies and the results presented hereafter are the average of these 25 runs.
+We performed simulations for five different densities varying from 50 to
+250~nodes deployed over a $50 \times 25~m^2 $ sensing field. More
+precisely, the deployment is controlled at a coarse scale in order to ensure
+that the deployed nodes can cover the sensing field with the given sensing
+range.
+
+Our protocol is declined into four versions: MuDiLCO-1, MuDiLCO-3, MuDiLCO-5, and MuDiLCO-7, corresponding respectively to $T=1,3,5,7$ ($T$ the number of rounds in one sensing period). In the following, we will make comparisons with three other methods. DESK \cite{DESK}, GAF~\cite{GAF}, and DiLCO~\cite{Idrees2}, where MuDiLCO-1 is similar to DiLCO.
+%Some preliminary experiments were performed in chapter 4 to study the choice of the number of subregions which subdivides the sensing field, considering different network sizes. They show that as the number of subregions increases, so does the network lifetime. Moreover, it makes the MuDiLCO protocol more robust against random network disconnection due to node failures. However, too many subdivisions reduce the advantage of the optimization. In fact, there is a balance between the benefit from the optimization and the execution time needed to solve it. Therefore,
+We set the number of subregions to 16 rather than 32 as explained in section \ref{ch4:sec:04:05}.
+We use the modeling language and the optimization solver which are mentioned in section \ref{ch4:sec:04:02}.
+%In addition, the energy consumption model is presented in chapter 4, section \ref{ch4:sec:04:03}.
+
+\subsection{Metrics}
+\label{ch5:sec:04:02}
+To evaluate our approach we consider the following performance metrics
+\begin{frame}{}
+\begin{enumerate}[i)]
+
+\item {{\bf Coverage Ratio (CR)}:} The coverage ratio can be calculated by:
+\begin{equation*}
+\scriptsize
+\mbox{CR}(\%) = \frac{\mbox{$n^t$}}{\mbox{$N$}} \times 100,
+\end{equation*}
+where $n^t$ is the number of covered grid points by the active sensors of all
+subregions during round $t$ in the current sensing phase.
+% and $N$ is the total number of grid points in the sensing field of the network. In our simulations $N = 51 \times 26 = 1326$ grid points.
+
+\item{{\bf Number of Active Sensors Ratio (ASR)}:} The Active Sensors
+ Ratio for round t is defined as follows:
+\begin{equation*}
+\scriptsize \mbox{$ASR^t$}(\%) = \frac{\sum\limits_{r=1}^R
+ \mbox{$A_r^t$}}{\mbox{$|J|$}} \times 100,
+\end{equation*}
+where $A_r^t$ is the number of active sensors in the subregion $r$ during round
+$t$ in the current sensing phase.
+%, $|J|$ is the total number of sensors in the network, and $R$ is the total number of subregions in the network.
+
+\item {{\bf Energy Consumption (EC)}:} EC can be computed as follows:
+
+ \begin{equation*}
+ \scriptsize
+ \mbox{EC} = \frac{\sum\limits_{m=1}^{M} \left[ \left( E^{\mbox{com}}_m+E^{\mbox{list}}_m+E^{\mbox{comp}}_m \right) +\sum\limits_{t=1}^{T} \left( E^{a}_t+E^{s}_t \right) \right]}{\sum\limits_{m=1}^{M} T},
+ \end{equation*}
+
+The energy factors of above equation are described in section \ref{ch4:sec:04:04}. $E^a_t$ and $E^s_t$
+indicate the energy consumed by the whole network in round $t$ of the sensing phase.
+
+%where $M$ is the number of periods and $T$ the number of rounds in a period~$m$, both during $Lifetime_{95}$ or $Lifetime_{50}$. The total energy consumed by the sensors (EC) comes through taking into consideration four main energy factors.
+%The first one , denoted $E^{\scriptsize \mbox{com}}_m$, represents the energy consumption spent by all the nodes for wireless communications during period $m$. $E^{\scriptsize \mbox{list}}_m$, the next factor, corresponds to the energy consumed by the sensors in LISTENING status before receiving the decision to go active or sleep in period $m$. $E^{\scriptsize \mbox{comp}}_m$ refers to the energy needed by all the leader nodes to solve the integer program during a period. Finally, $E^a_t$ and $E^s_t$ indicate the energy consumed by the whole network in round $t$.
+
+ %$\right\}$
+
+\item {{\bf Execution Time}:}
+\item {{\bf Stopped simulation runs}:} \makebox(0,0){\put(0,2.2\normalbaselineskip){%
+ $\left.\rule{0pt}{2.3\normalbaselineskip}\right\}$ Described in section \ref{ch4:sec:04:04}.}}
+\item {{\bf Network Lifetime}:}
+
+\end{enumerate}
+
+\end{frame}
+
+\subsection{Results Analysis and Comparison }